Zeljko Obrenovié

Research and Practice

HEssays of a researcher-practitioner

Research and Practice

Essays of a researcher-practitioner

Zeljko Obrenovié

This book is for sale at
http://leanpub.com/researchandpractice

This version was published on 2020-03-01

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

© 2016 - 2020 Zeljko Obrenovi¢

http://leanpub.com/researchandpractice
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!

Please help Zeljko Obrenovi¢ by spreading the word about
this book on Twitter!

The suggested tweet for this book is:

Just learned about #research_practice_essays.
@zeljko_obren discuss research and practice.
obren.info/publications.html

The suggested hashtag for this book is
#research_practice_essays.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

#research_practice_essays

http://twitter.com
https://twitter.com/intent/tweet?text=Just%20learned%20about%20%23research_practice_essays.%20@zeljko_obren%20discuss%20research%20and%20practice.%20obren.info/publications.html
https://twitter.com/intent/tweet?text=Just%20learned%20about%20%23research_practice_essays.%20@zeljko_obren%20discuss%20research%20and%20practice.%20obren.info/publications.html
https://twitter.com/intent/tweet?text=Just%20learned%20about%20%23research_practice_essays.%20@zeljko_obren%20discuss%20research%20and%20practice.%20obren.info/publications.html
https://twitter.com/search?q=%23research_practice_essays
https://twitter.com/search?q=%23research_practice_essays

To Jacobine, Nada and Marie.

Contents

Foreword i

RESEARCH & PRACTICE . 1

1. The Curious Case Of “Small” Researchers-Practitioners 2

e

2. The Hawthorne Studies 12

3. Is Academia Guilty of Intellectual Colonization

of Practice? 27
4. The Four Points of the Research Compass 31
5. Insights fromthePast 44
6. The Researchers-Practitioners Manifesto 67
I DESIGN & RESEARCH ... 71
7. Design-Based Research 72
8. Doing Design-Based Research in Practice 84

9. Design As a Political Activity 91

CONTENTS

II NEW IDEAS

10. Experiential Learning of Computing Concepts . 103

11. Sketchifying: Bringing Innovation into Software
Development 117

To Probe Further: Selected Bibliography

Foreword

In my career, I have been doing research in both academic and
industrial settings. This experience has provided me with an
opportunity to see both positive and negative aspects of doing
research in practice. With this collection, I want to share some
of the lessons I learned.

The central theme of the essays is the tension between the
value of doing research in practice and difficulties that such
work brings. Practice is vibrant and still hugely unexplored
area, and researchers-practitioners may be in unique posi-
tions to witness or make important discoveries in many areas
of computing. However, there are a number of barriers and
challenges that practitioners-researchers face.

Due to my background and interests, essays are limited, to
some degree, to discussions related to software engineering
and interaction design. However, in the essays, I borrow from
many disciplines, including computer science, software en-
gineering, human-computer interaction, interaction design,
classical design, and philosophy.

Structure of the Book

This book is organized into three parts.

Part I introduces four essays that explore the relationship
between the research and practice in more general terms.

Foreword ii

The first essay “The Curious Case Of ‘Small’ Researchers-
Practitioners” discusses the difficulties of doing research out-
side mainstream research laboratories and universities. The
second essay “Is Academia Guilty of Intellectual Colonization
of Practice?” discusses one of the common anti-patterns of
research-practice collaboration. In the essay “The Hawthorne
Studies and Their Relevance to Computer Science Research”
I discuss the groundbreaking contribution of the Hawthorne
studies, and why I think they are still relevant for computer-
science research. The essay “The Four Points of the Research
Compass” explores the research motivation behind our re-
search efforts, arguing that research can be motivated by
a vision, curiosity, doubt or skepticism. The essay “Insights
from the Past” discusses the value of studying the past so that
it might not be reinvented but become a source of inspira-
tion for the present and future. The essay “The Researchers-
Practitioners Manifesto” is a call to practitioners to start doing
research in practice and to organizes themselves outside cur-
rent academic structures. I believe that the only way to bridge
the practice-research gap is for practitioners to start doing
research and to bottom-up build necessary organizations and
structures”

Part II focuses of the relation of design practice and research.
The first essay “Design-Based Research” discusses what why
design can be a basis for doing research, focusing on what we
can learn when we engage in the design of computer systems.
The second essay “Doing Design-Based Research in Practice”
presents more practical advice about how to do design-based
research in practice. The essay “Design As a Political Activity”
presents often overlooked aspect of design activities - politics.

Part III presents some of my new ideas. Doing research in
practice is based on learning from experience and intensive

Foreword iii

experimentation. Consequently, two remaining essays cover
these two topics. The essays “Teaching Based on Experiential
Learning Paradigm” presents some of my ideas and attempts
to use experiential learning paradigm in education. Last essay
“Bringing Innovation into Software Development” presents
my work on stimulating software designers to spend more
time experimenting and considering alternative ideas before
deciding to proceed with engineering.

For readers interested to further explore the topic of research
and practice, I also provide a selected bibliography at the end
of the book.

About the Cover

The picture is from Apollo 17 mission, 11 December 1972. On
this picture Astronaut Eugene A. Cernan, commander, makes
a short checkout of the Lunar Roving Vehicle during the
early part of the first Apollo 17 Extravehicular Activity (EVA-
1) at the Taurus-Littrow landing site. This photograph was
taken by scientist-astronaut Harrison H. Schmitt, lunar mod-
ule pilot. The mountain in the right background is the east
end of South Massif. While astronauts Cernan and Schmitt
descended in the Lunar Module (LM) “Challenger” to explore
the Moon, astronaut Ronald E. Evans, command module pilot,
remained with the Command and Service Modules (CSM)
“America” in lunar-orbit.

I selected the cover photo because it symbolizes exploration.
The picture also illustrates my approach to doing research: I
build experimental systems to explore new domains. I also use
the paradigm of an astronaut in space to illustrate the isola-
tion and loneliness of researchers doing research in practice,
outside established research institutions.

I RESEARCH &
PRACTICE

1. The Curious Case Of
“Small” Researchers-
Practitioners

The following article I wrote in 2013, a year after I decided to
leave my academic position and take an industrial position. It
represents my initial observation on value and challenges of
doing research in practice.'

Astronaut Ronald E. Evans outside the Apollo 17 spacecraft. Wikimedia
Commons

"This chapter is based on the article Research and practice: the curious case of ‘small’
researchers-practitioners, Communications of the ACM 56, 9 (September 2013), 38-40.

https://doi.org/10.1145/2500138
https://doi.org/10.1145/2500138

The Curious Case Of “Small” Researchers-Practitioners 3

Introduction

In recent years we have witnessed more attempts at bridg-
ing the practice-research gap in computer science [5]. ACM
and IEEE Computer Society [1], for example, seem to be
increasingly more open to “the voice of practice” Commu-
nications now includes the Practice section. ACM Queue
promotes itself as an online magazine for practicing soft-
ware engineers, “written by engineers for engineers” ACM
interactions describes its goal as to “lay between practice
and research...making...research accessible to practitioners
and making practitioners voices heard by researchers” IEEE
Software defines its mission as to build the community of
leading software practitioners. The International Conference
on Software Engineering (ICSE) has the Software Engineering
in Practice track, and, similarly, the ACM SIGCHI conference
accepts case studies intended to “specifically reach out to the
practitioner communities.”

While the research-practice symbiosis seems to be flourish-
ing, doing research as a practitioner is still not easy. It is
even more difficult if research is not conducted in big com-
panies or in collaboration with universities. Many of us are
researchers-practitioners working in relatively small compa-
nies. By researchers-practitioners, I mean practitioners with
clear practical tasks in their job, but who have background
or skills of a researcher, obtained, for example by getting a
Ph.D. or working as a postdoctoral researcher. And I call these
practitioners “small” because they usually do research inde-
pendently or in small teams, and cannot associate with their
work research reputation and influence of their institution or
companies. In small companies, we may not have a number of
things that researchers in universities or big companies take

The Curious Case Of “Small” Researchers-Practitioners 4

for granted, [7] such as an explicit research department, bud-
get for conferences, freedom, or even the job description and
status of a researcher. But we can bring to practice the benefits
of research approach, rigor, and discipline. And we can make
accessible to the research community valuable insights and
unique lessons from practice.

Contributions of small practitioners-researchers, however,
are not always recognized and valued. Furthermore, they face
a number of challenges and obstacles that researchers in big
companies or in universities do not. In this Viewpoint, I want
to call attention to the value of doing “small” research in small
companies, and point out some of the main obstacles that such
work faces.

Recognizing the Value of “Small” Research
in “Small” Companies

Researchers are, in general, good in critical thinking, analysis,
and dissemination of their findings. These skills, combined
with practical work, can bring to their companies and the
research community several benefits. Here, I discuss two
characteristics of research work I find particularly relevant
for small researchers: generalization and publishing.

Generalization. Normally, the goal of practice is to create
a successful product, and lessons learned in this activity are
restricted to the particular solution and the people involved in
it. To be acceptable as research contributions, however, these
lessons need to be generalized, applicable beyond original
context, and useful to others (see the chapter Design-Based
Research for more details about such generalized knowledge).

Generalization is not only an abstract academic goal, but
it can be valuable for practice. In my previous position, I

The Curious Case Of “Small” Researchers-Practitioners 5

worked in a relatively small company in a department called
“best practices” The primary goal of our department (one
engineer, one architect, and one researcher) was to collect,
generalize, and share best software development practices
related to our software products. Being a relatively small
company meant we did not have the luxury to repeat errors,
and our department was built with the aim of maximally
leveraging the lessons learned in our projects. Our task was
not to simply collect these lessons, but to generalize them and
make them usable and understandable to the broader audi-
ence, within and outside our company. Applying research
approaches, such as using analytic generalizations, evalua-
tions, and connecting our findings to existing work, helps
significantly. Good generalizations can also help avoiding
low-level technical jargon. Consequently, our work has been
valuable not only for our architects and developers but also to
our sales team, who were able to use some of our analyses as
arguments in discussion with demanding and critical clients.
In contrast to research in big companies, small researchers are
closer to the “battlefield” and can more directly contribute to
the company’s success.

For the research community, generalizations of practical so-
lutions on a broader scale and across multiple projects are
particularly valuable. For example, we recently published an
article about security patterns of integrating authentication
and personalization, generalizing security implementations
in several of our projects [6]. I also see a potential value of
having more smaller companies sharing their “best practices,”
combined with additional effort of the academic community
to connect and further generalize these practices. I had an
opportunity to witness the value of this approach firsthand,
when I was one of the guest editors for the special issue of

The Curious Case Of “Small” Researchers-Practitioners 6

ACM Multimedia Systems Journal on Canonical Processes
of Media Production [4]. This special issue was not only
a collection of articles, but it presented a model of media
production that was based on generalization of 10 companion
articles describing different media production domains (each
of which presented some specific media production system
or project). Contributions included several media production
companies, artists, and academic researchers. The resulting
model significantly benefited from interaction and general-
ization of issues from our industrial contributors. Our indus-
trial contributors also benefited from connecting their work
to other solutions, as they were able to get new ideas and
see that their issues are shared by others and that they can
learn from each other’s experiences. It would be interesting
to see more such attempts in other domains, where small
researchers would present their initial generalizations of their
domains, and a broader research community would connect
these generalizations to other industrial and academic work.

Publishing Results. Publishing findings from practice has
obvious benefits for the research community as it enables it
to obtain deeper insights about relevant practical issues, and
gets more realistic overview of the state of the practice [3].
Stolterman, for example, argued that many research projects
about theoretical approaches, methods, tools, and techniques
for supporting interaction designers in their practice failed
because they were not guided by a sufficient understanding
of the nature of practice [8].

Publishing can also significantly help a small company. One
of the most important values of publishing in peer-reviewed
venues is receiving knowledgeable and valuable criticism. By
publishing your results, you also have to make the reasoning
behind your generalized claims explicit, public, and open to

The Curious Case Of “Small” Researchers-Practitioners 7

critical reflection and discussion, which enables receiving
feedback of experts and colleagues from different communi-
ties. Publishing results can also have positive influence on
company’s promotion and hiring of new employees. Small
companies normally cannot sponsor huge events, but pre-
senting a paper at a conference, combined with promotion of
this event by the company, may give a company a fair share
of visibility and promotion for much smaller price. Small
companies may also have more difficulties attracting high-
quality employees, and I received unexpected encouragement
to actively participate in conferences from the Human Re-
sources (HR) department. The HR department elaborated that
such activities can help the company to demonstrate the
quality of its work and its people, both to potential new clients
and employees.

Main Obstacles

Doing research outside universities or big companies, even
when conducted with rigor and discipline, comes with a
number of challenges. Finding time and resources for research
in small companies is always challenging. And practice does
not always recognize the value of research contributions. It
may require significant time and effort to convince relevant
people in your company of the potential value of doing
research. Practice also needs to understand that it is not
enough to simply relabel “development” as “research,” and
that research cannot be done properly without individuals
who are disciplined and objective enough to conduct it with
scientific rigor.

Less obviously, and contrary to the recent trend of openness
for “the voice of practice,” a small researcher-practitioner

The Curious Case Of “Small” Researchers-Practitioners 8

may face even bigger barriers from the research community.
Research work is difficult and incomplete if a researcher
is not a part of a community of researchers. However, for
researchers-practitioners coming from smaller or less-known
companies, it may be difficult to become a part of such a
community. First, it may be difficult to find a venue open
for contributions of the practitioners. Reviewers also may
be biased toward more academic contributions and methods.
When you try to submit some of your work for publication in
places that seem to promote strong practice orientation, you
may find many of them are not open for your contributions.
For example, the Communications Practice section publishes
articles “by invitation only” Similarly, ACM Queue reviews
articles only from authors who have been “specifically invited
to submit manuscripts.” This makes it practically impossible
for people outside a relatively small group of elite practition-
ers to even try to contribute regardless of the quality of their
contribution.

Another barrier from the academic side comes from stereo-
types about the research process. When working for my
previous company, [tried to join the ResearchGate?, as several
of my papers have been uploaded there by other co-authors.
However, when trying to register with my company email ad-
dress, I received the following email message: “ We 've reviewed
your request and regret to inform you that we cannot approve
your ResearchGate account at present. As ResearchGate is a
network intended for scientific and academic exchange, we
ask that you sign up with an email address affiliated with
your institution (e.g., university, organization, or company)
or provide us with details of your independent research (e.g.,
research discipline and current project).”

*https://www.researchgate.net/

https://www.researchgate.net/
https://www.researchgate.net/

The Curious Case Of “Small” Researchers-Practitioners 9

My email address was affiliated with my institution (a com-
pany), in an obvious way (my name at my company domain).
However, it seems a company is considered a research or-
ganization only if it is a well-known institution, and with
a separate research department (for example, Google Labs,
Microsoft Research, Yahoo Research, Philips Research...). This
anecdote points to a problem of researchers from smaller
companies who may be discriminated in their attempts to
become part of the research community, and may have dif-
ficulties passing the threshold of being considered worthy
of belonging to the research community. Also the notion
of a research project seems to be closer to the academic
environment where researchers work for several years on the
same project. In practice, there may be a long-term research
thread, but research contributions do not necessarily belong
to an explicit project.

Conclusion

There is a potential value for both, practice and research, if
we have more active “small” researchers-practitioners. With
declining numbers of research positions in academia [2] we
have increasing numbers of research-capable people entering
small companies. Practice is rich and still hugely unexplored
area, and researchers-practitioners may be in unique posi-
tions to witness or make important discoveries in many areas
of computing. However, there are a number of barriers and
challenges that “small” practitioners-researchers face. Prac-
tice needs to become more aware about the value of applying
research rigor and discipline, and the research community
must be more open for attempts of “small” researcher-prac-
titioners to join them as equals. Educational institutions also
need to think about how to educate researchers-practitioners,

The Curious Case Of “Small” Researchers-Practitioners 10

rather than researchers or practitioners. It also requires more
continued efforts of small researchers-practitioners to do
high-quality research, contribute to the research community,
and call attention to their problems.

The Curious Case Of “Small” Researchers-Practitioners 11

References

1. Bourne, S. and Cantrill, B. Communications and the
practitioner. Commun. ACM 52, 8 (Aug. 2009), 5.

2. Briand, L. Embracing the engineering side of software
engineering. IEEE Software 29, 4 (July-Aug. 2012), 96—
96.

3. Glass, R.L. One man’s quest for the state of software
engineering’s practice. Commun. ACM 50, 5 (May 2007),
21-23.

4. Hardman L., Obrenovic, Z., and Nack, F., guest eds.
Special issue of ACM Multimedia Systems Journal on
canonical processes of media production 14, 6 (Dec.
2008), 327-433.

5. Norman, D.A. The research-practice gap: The need for
translational developers. interactions 17, 4 (July 2010),
9-12.

6. Obrenovi¢, Z. and den Haak, B. Integrating end-user
customization and authentication: The identity crisis.
[EEE Security and Privacy 10, 5 (Sept./Oct. 2012), 82—85.

7. Spector A., Norvig, P., and Petrov, S. Google’s hybrid
approach to research. Commun. ACM 55, 7 (July 2012),
34-37.

8. Stolterman E. The nature of design practice and im-
plications for interaction design research. International
Journal of Design (IJDesign) 2, 1 (2008).

2. The Hawthorne
Studies

The Hawthorne Studies are probably one of the most im-
portant and often forgotten studies of human factors. This
study is still relevant as it illustrates the difficulty of study-
ing realistic complex human issues in realistic situations. It
also illustrates that lasting and robust research contributions
related to real-world human issues may be based on inquiry
from within industry rather than initiated by academia and
commissioned by funding bodies."

Aerial view of the Hawthorne Works, ca. 1925.

"This chapter is based on the article The Hawthorne studies and their relevance to
HCI research, interactions 21, 6 (October 2014), 46-51.

https://doi.org/10.1145/2674966
https://doi.org/10.1145/2674966

The Hawthorne Studies 13

Introduction

The Hawthorne studies are best known for the Hawthorne
effect, namely that those who perceive themselves as mem-
bers of the experimental or otherwise favored group tend to
outperform their controls, often regardless of the interven-
tion. Secondary sources describing the Hawthorne effect (e.g.,
[1,2]) tell us that in an experiment conducted at Western
Electric’s Hawthorne Works factory in the 1920s, psycholo-
gists examined the working conditions of plant workers doing
repetitive tasks. The major finding quoted is that irrespective
of what one does to improve or degrade conditions, produc-
tivity goes up. The usual example given is variation in light.
If light conditions improved, so did productivity; however,
when light conditions were downgraded, productivity again
went up.

Unfortunately, this oversimplified story about the Hawthorne
effect overshadows the groundbreaking contribution of the
Hawthorne studies. The Hawthorne effect is not only con-
troversial [1]—it’s also probably the least interesting and
least relevant result of this landmark study. The famous light
experiment at the Hawthorne plant was just one of more
than 30 experiments involving repetitive workers (e.g., relay
assemblers, mica splitters) as well as supervisors and other
decision makers [3]. And the results were not quite as simple
as secondary sources may suggest.

Here, I want to call attention to some of the breakthroughs
credited to the Hawthorne studies, which have made a num-
ber of practical, conceptual, and methodological innovations
in human factors, management studies, and sociology. I also
want to argue that even though these studies were performed
more than 80 years ago, the HCI research community can still

The Hawthorne Studies 14

learn something from them.

The Hawthorne Studies

The Hawthorne studies were conducted at Western Electric’s
large plant outside Chicago. The research outcomes are re-
ported in Roethlisberger and Dickson [4]. I would also rec-
ommend Jeffrey Sonnenfeld’s detailed analysis of the studies
and their influence [5], as well as the online resources at the
Harvard Business School [6].

In a period between 1924 and 1933, six studies were per-
formed. These studies were longitudinal in nature, running
between several months and several years.

The Illumination Studies (1924). The studies began in 1924
when researchers, together with the National Research Coun-
cil of the National Academy of Sciences, tried to examine
the relationship between light intensity and employee pro-
ductivity at the Hawthorne Works plant. The expectation
was that an increase in lighting would lead to an increase
in productivity, and vice versa. But an impressive team of
industrial specialists and academics was not able to find any
consistent correlation between lighting levels and worker
output. The productivity increased with brighter intensity,
but also with lower intensity, as well as when researchers
only pretended to increase or decrease the intensity of light.
No further tests were planned originally, but researchers
were puzzled by these unanticipated results. They realized
there was not a simple answer to the issue of illumination
and worker productivity. The psychological and sociological
issues, which were not controlled, presented a major problem
with the test results.

The Hawthorne Studies 15

L " v
5 DEPT. €325 | Coll WINDING !
y REeceveR COILS . 5 OPERATIVES
E i
L W00
= LY
S !
§uo T L L e
:EM ’&)
L dw i
9 40| 0%
3 S
G 30| 23 I
yoo =f B aEats
Dany Ave. lud
§ ol 03 JLIL:LU—‘”’::::-—”—_‘J—L FLE fo
= =
<
OLo LIGHTING SySTEM 1 |New :mmm New LISHTING
FOO WA A
ARTIFICIAL SYSTEM ALONE 4 FOOT CANOLES &;Fmrc‘mss 2/ Foo.
Ammmmgkus ARTIFICIAL m#aa&rmm /6 Foor CANDLES. 27 Foor
e it N gwam\w”j"ﬁhw INDHWTR' ﬁ RRE&& B\NMHWN%MQQ‘_Q&Q‘Q"
] "1.924 § !925% 4

A log from the illumination studies.

At this point, the National Research Council withdrew from
the project. However, Western Electric decided to continue
studies in collaboration with Harvard University researchers,
including Fritz Rothlisberger, W. Lloyd Warner, and Elton
Mayo. They also changed the research objective from a study
of illumination to a study of the physical factors that cause
fatigue and monotony.

The Relay Assembly Test Room (1927-1932). In the next re-
search phase, five workers assembled magnetic relays, work-
ing in isolation from the main shop. The separation was
chosen to better control working conditions and to more
deeply investigate productivity. Researchers collected and
analyzed a significant amount of data, including mechanical
records of worker output, a daily record of comments made
by researchers and study members, observers’ logs of work
activity, results of periodic medical examinations of workers,
and interview transcripts.

The Hawthorne Studies 16

This research phase lasted five years, but experimental con-
ditions were maintained for only the first two and a half
years. Thirteen experimental treatments took place, including
variations in the number and duration of rest breaks, the
length of workdays, and the length of workweeks. Through-
out the studies, production steadily rose. At the end, when
the original, more demanding conditions were reinstated, the
productivity of workers dropped only slightly, to a 30 percent
increase over the original output. In addition, absenteeism
dropped to a third of the original absenteeism. Evidence to
support the initial hypotheses about relief from fatigue and
monotony was inconclusive.

N

g

Women in the assembly test room.

Two derivative studies (1928-1929). Because researchers
were unsure what caused the significant increase in pro-

The Hawthorne Studies 17

ductivity in the Relay Assembly Test Room, they launched
two derivative studies. These explored two possible explana-
tions for improvements in productivity. One explanation was
the different incentive systems. Researchers realized that in
the Relay Assembly Test Room, workers in a smaller group
could more directly affect their group-based compensation,
compared with 200 assembly workers in the main shop. A
new relay group with a small-group-output incentive plan
was arranged on the shop floor, but without being isolated
from the other workers. Productivity quickly increased by 12
percent but leveled off for the duration of the study.

The second derivative study was performed to test the effect
of isolation of a small group on productivity. A group of
workers did not receive a different incentive plan but were
placed in a separate room. Group output increased in the early
phase of this project by 15 percent. However, the investigators
also realized that external factors had a much more significant
effect on productivity than any of their interventions. For
instance, when rumors about the possible transfer of some
jobs away from Hawthorne appeared, productivity began to
drop significantly.

The conclusion from the derivative studies was that the wage
incentive had some role in the productivity increase, but
that it certainly did not completely explain the productivity
increase in the Relay Assembly Test Room. Furthermore, the
investigators concluded that it was not possible to identify
the independent influence of wage incentives on productivity
because it is so intertwined with other variables.

Interview program (1928-1930). The management and in-
vestigators were impressed with the great potential of work-
ers if they were given proper conditions. But they were
uncertain about what these conditions might be. For that

The Hawthorne Studies 18

reason, from 1928 to 1930 they interviewed around 21,000
employees. The interviews were then analyzed and classified
by the articulated complaints.

Interviewers made a number of interesting findings. But they
also quickly discovered that it was not enough to simply
catalog complaints. Management was aware of many of the
complaints, but out of context, complaints were misleading.
However, understanding the personal and economic back-
ground of the workers made possible a much richer appre-
ciation of the importance of a given complaint.

The interview program also suggested there was a great mo-
tivational value in directly asking workers for their opinions
and perceptions and listening closely to their responses, as
well as recognizing the relationships between workers’ work
and non-work lives.

Bank Wiring Observation Room (1931-1932). Hawthorne
investigators also observed the relative social positions of
different jobholders in a group. In the Bank Wiring Observa-
tion Room, the last research phase in the Hawthorne studies,
investigators looked at 14 workers in three different jobs.
They worked together to produce wired equipment for use
in switches. The goal was to investigate the status distinc-
tions and social relations in the workplace. The researchers
discovered an unexpected culture, revealed through group
norms and activities such as informal leadership patterns,
restriction of output, group discipline, friendship, job trading,
and cooperation. In this final research phase, the investigators
developed hypotheses about the conditions that encourage
the creation of an informal culture, which may be either
compatible with or hostile to managerial intentions.

The Hawthorne Studies 19

The Legacy of the Hawthorne Studies

It is easy to see the Hawthorne studies as a failure. None of the
findings obtained were very conclusive, and the studies were
also imperfect from a methodology point of view. Critiques
were often harsh, with results being called “injudicious,”
“scientifically worthless,” “the myths of Hawthorne,” and the
result of “cow sociologists” [5].

Sonnenfeld, however, noted that many critiques of the Hawthorne
studies were incorrect and out of context, claiming that “the
gunsmoke of academic snipers can obscure the conceptual
contribution of these pioneering efforts” [5]. He elaborated
that the Hawthorne studies were conducted in a manner
that led not to the testing of theories, but to their devel-
opment. Consequently, their greatest contribution was to
expand the concepts of organizational behavior beyond Fred-
erick Taylor’s notion of scientific management. At that time
the prevailing view was that people went to work purely for
money and to earn a living. The Hawthorne studies showed
convincingly that this view was deeply flawed. “Instead of
treating the workers as an appendage to ‘the machine,”
Sonnenfeld noted, the Hawthorne studies brought to light
ideas concerning motivational influences, job satisfaction,
resistance to change, group norms, worker participation, and
effective leadership [5]. In the 1930s, these were groundbreak-
ing concepts. Under the influence of the Hawthorne studies,
management teaching and practice changed significantly.
The Hawthorne research stimulated thought on individual
differences and job matching, work design, incentive plans,
employee participation, the social nature of organizational
activities, small work groups, and leadership. The findings
from the studies have been credited with contributing to the

The Hawthorne Studies 20

later development of social science topics, including small-
group behavior, client-centered theory, organization theory,
and research methodology.

Porter, Lawler, and Hackman noted that the Hawthorne in-
vestigators were the first to highlight the social complexities
of organization life:

“From the time of the publication of the results of the Hawthorne
Studies onward, no one interested in the behaviour of em-
ployees could consider them as isolated individuals. Rather,
such factors and concepts as group influences, social status,
informal communication, roles, norms, and the like were
drawn upon to explain and interpret the voluminous data
from these studies and other field investigations that followed
them.” [7].

As a consequence, in social and management research, the
study of static social structures practically disappeared after
the publication of the Hawthorne research.

The Hawthorne studies significantly contributed to the devel-
opment of research methodology for studying complex social
situations. Hawthorne investigators were initially convinced
that controlled experiment was the best methodology for
their research. Through the studies they made a significant
methodological shift, in which they recognized the impossi-
bility of applying the controlled experiment approach for the
questions they were addressing. Roethlisberger and Dickson
summarize this shift:

The difficulty, however, went much deeper than the personal
feelings of failure of the investigators. They were entertaining
two incompatible points of view. On the one hand, they were
trying to maintain a controlled experiment in which they
could test for the effects of single variables while holding all

The Hawthorne Studies 21

other factors constant. On the other hand, they were trying to
create a human situation, which remained unaffected by their
own activities. It became evident that in human situations
not only was it practically impossible to keep all other factors
constant, but trying to do so in itself introduced the biggest
change of all; in other words, the investigators had not been
studying an ordinary shop situation but a socially contrived
situation of their own making.

With this realization, the inquiry changed its character. No
longer were the investigators interested in testing for the
effects of single variables. In the place of a controlled ex-
periment, they substituted the notion of a social situation,
which needed to be described and understood as a system of
interdependent elements™ [4].

Individual human behavior is determined by a complex set
of factors and is rarely a consequence of a simple cause-and-
effect relationship.

The Relevance of the Hawthorne Studies
for Computer Science Research

Those who cannot remember the past are condemned to repeat
it—George Santayana

The story of the Hawthorne studies is in many ways similar
to the story about the development of the many computer
science (CS) fields. Liam Bannon, for example, observed that
the HCI (human-computer interaction) discipline has moved
from early studies of human factors and experimental eval-
uation of interfaces toward the general sense-making of our
world:

The Hawthorne Studies 22

The area of concern [of HCI] is much broader than the simple
“fit” between people and technology to improve productivity
(as in the classic human factors mold); it encompasses a much
more challenging territory that includes the goals and activ-
ities of people, their values, and the tools and environments
that help shape their everyday lives [8].

In other words, HCI is much more than efficient user data
input or output. Solutions to HCI problems do not reside in
simple ergonomic corrections to user interfaces. Hawthorne
investigators drew similar conclusions about working con-
ditions, namely that simple ergonomic corrections, such as
changing the light intensity, are not sufficient to improve
productivity and are certainly not the most significant factors
that influence productivity.

Another reason the Hawthorne studies are relevant for CS
research is methodological. Investigators made a shift from
controlled experiments toward approaching a complex social
situation as a system of interdependent elements. In many
ways, this shift is what we experience today in HCI and
interaction design communities. Bannon, for example, argued
that the introduction of the computer supported cooperative
work (CSCW) field presented “a shift from a psychological to a
sociological perspective on human work and activity, empha-
sizing field observation methods rather than lab studies” [8].
The Hawthorne studies provide an illustration of why such
approaches are needed when studying complex human and
social phenomena.

Furthermore, the studies showed the value of careful obser-
vation and honest reporting of research failures and successes.
As noted by Jonathan Arnowitz and Elizabeth Dykstra-Erickson,
“[t]he great value of the Hawthorne experience is in learning
to observe and keep on observing, especially when an initial

The Hawthorne Studies 23

causal relationship doesn’t quite account for the observed
interaction” [2]. In many situations Hawthorne researchers
were confused, and they admitted it. But they continued to
carefully observe and document all of their findings. The
original elaborate report of the studies, Management and the
Worker [4], is a model of honest reporting of research. It de-
scribes, in a chronological order, the things investigators did,
the judgments they made, the leads they followed, and the
conclusions they drew. Roethlisberger and Dickson selected
this method to “picture the trails and tribulations of a research
investigator at his work and thus allow future investigators to
see and profit from the mistakes which were made” [4]. This
approach makes Management and the Worker, even after 75
years, a relevant and surprisingly insightful book, useful for
anyone who wants to understand the difficulty of studying
realistic complex human issues in realistic situations. I would
recommend it as standard reading for CS researchers.

The Hawthorne studies also demonstrated the value of do-
ing research in practice, over a long period, and with real
users and realistic tasks. A related issue is the fact that the
Hawthorne studies produced useful results primarily because
of the interest and support of Hawthorne Works. While
researchers from the academy were involved, the main ini-
tiative did not come from the academic side or from fund-
ing agencies (the National Research Council of the National
Academy of Sciences withdrew after the initial “failure” of
the illumination test). I think this may be an important
lesson for the HCI community. It suggests that lasting and
robust research contributions related to real-world human
issues may be those based on inquiry from within industry
rather than those initiated by academia and commissioned
by funding bodies.

The Hawthorne Studies 24

Lastly, the Hawthorne studies illustrated that the value of
research is not necessarily derivation of conclusive results.
The legacy of these studies is a realization that treating the
workers as an “appendage to ‘the machine’” with the goal of
improving the human-machine “fit” is a flawed conceptual
framework [5]. This legacy may stimulate us to look differ-
ently at some HCI contributions. Similar to the Hawthorne
studies, the lasting impact of some HCI research may be not
the results of laboratory experiments, but rather an expansion
of the concepts of HCI beyond notions of human-computer
“fit” and the identification of new concepts that can help us
to understand human activities mediated by computing.

The Hawthorne Studies 25

References

1. Macefield, R. Usability studies and the Hawthorne Ef-
fect. Journal of Usability Studies 2, 3 (2007), 145-154.

2. Arnowitz, J. and Dykstra-Erickson, E. Observation and
interaction design: Lessons from the past. Interactions
14, 6 (Nov. 2007), 64—fF.

3. Brown, A.L. Design experiments: Theoretical and method-
ological challenges in creating complex interventions in
classroom settings. The Journal of the Learning Sciences
2, 2 (1992), 141-178.

4. Roethlisberger, F.J. and Dickson, W.J. Management and
the Worker. Harvard University Press, 1939.

5. Sonnenfeld, J.A. Shedding light on the Hawthorne Stud-
ies. J. Occupational Behavior 6, 2 (1985), 111-130.

6. http://www.library.hbs.edu/hc/hawthorne/

7. Porter, LW., Lawler, E.E., and Hackman, J.R. Behaviour
in Organizations. McGraw-Hill, New York, 1975.

8. Bannon, L. Reimagining HCI: Toward a more human-
centered perspective. Interactions 18, 4 (2011), 50-57.

The Hawthorne Studies 26

The last remaining portion of Western Electric’s Hawthorne Works
factory.

3. Is Academia Guilty of
Intellectual
Colonization of
Practice?

Creating partnerships between academia and industry is valu-
able but challenging. Doing research in practice is rare and
difficult. But doing it naively creates more harm than good.
The following essay is my reaction to negative side-effects of
naive academia-industry partherships.'

Plato’s academy mosaic. Wikimedia Commons.

"This chapter is based on my BLOGS@CACM post Is Academia Guilty of Intellec-
tual Colonization of Practice?

http://cacm.acm.org/blogs/blog-cacm/209258-is-academia-guilty-of-intellectual-colonization-of-practice/fulltext
http://cacm.acm.org/blogs/blog-cacm/209258-is-academia-guilty-of-intellectual-colonization-of-practice/fulltext

Is Academia Guilty of Intellectual Colonization of Practice? 28

Due to my position between industry and academia, over
the past few years I've been reading a lot and writing a bit
about the research-practice gap in computer science (CS). I've
discovered that many of the issues about the research-practice
gap in CS are not unique to our field. Other fields, such as
medical or social sciences, have been facing similar problems.
I believe we can learn a lot from them.

Recently, I came across an interesting article about the re-
search-practice gap in health services. In the editorial “Re-
search in general practice: who is calling the tune’,” Tom

O’Dowd made the following claim:

“Often in health services research the questions are asked
and answered by people outside general practice but using
general practitioners as respondents or data gatherers. There
is usually no involvement of the general practitioners in the
analysis or discussion of the project, although their time is
acknowledged. Surely this is a modern form of colonization
at intellectual and professional levels.” (British Journal of
General Practice, October 1995, page 515)

After reading this editorial, I started to wonder if this claim
would be true in my own field. So I did a simple exercise,
and replaced “general practice” with “software engineering”
in Tom O’Dowd’s original text:

“Often in software engineering [or another CS field] research
the questions are asked and answered by people outside
software engineering practice but using software engineering
practitioners as respondents or data gatherers. There is usu-
ally no involvement of the software engineering practitioners
in the analysis or discussion of the project, although their time
is acknowledged. Surely this is a modern form of colonization

*https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239398/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239398/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239398/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239398/

Is Academia Guilty of Intellectual Colonization of Practice? 29

at intellectual and professional levels.”

[am of the opinion that the adapted claim is true, at least
partially. I have seen many research contributions about
practice where I felt that involved practitioners could have
been credited more or could have given an opportunity to
contribute as co-authors. As a practitioner, I also have been
approached a number of times to participate in research
projects where my role was limited to anonymously filling
in questionaries’ and interview forms. None of the times I
was invited or given an opportunity to actively participate in
analysis or discussions. The researchers had good intentions.
But they were amateurs, usually students with little or no
practical experience in domains they were studying.

My main reaction in mentioned situations was not the feeling
of being “colonized.” Rather, it is the feeling of wasted effort
and missed opportunity. Doing research in practice is rare and
difficult, but doing it naively creates more harm than good.
At best, it does not help bridging the research-practice gap.
At worst, it makes the gap wider, as practitioners may be
reluctant to collaborate in any further activities.

I would definitely like to encourage academic researchers to
connect to practice more. But academic researchers should
be careful not to be perceived as “intellectual colonists.” They
should not treat practitioners as mere objects of their studies
or simple sources of data. In my view, default mode of
collaboration between researchers and practitioners should
be a research partnership. Practitioners can provide invalu-
able real-world knowledge and experience. As noted by Fred
Brooks, it is easy for academic researchers to overlook some
crucial properties of real-world (The Design of Design, page
82). Practitioners, on the other hand, generally lack research
skills. Academic researchers, therefore, can help creating the

Is Academia Guilty of Intellectual Colonization of Practice? 30

research climate in practice. They can supervise practitioners
in doing research, and further expand or generalize initial
research results and connect the results to existing body of
knowledge.

[am happy to see that several venues are providing space for
research-practice partnerships. The IEEE Software Insights
column, for instance, publishes contributions from software
engineering practitioners, offering them coaching and men-
toring, informal reviews prior to submission, an official peer
review, and professional editing support. The CACM Practice
column and ACM Queue follow similar paths. But, in general,
this type of collaboration is unusual, and not encouraged in
academia.

Academic researchers are not the only ones to be blamed.
Practitioners should not let themselves be “colonized.” Practi-
tioners are often uninterested in research and passive in inter-
action with researchers. To benefit from research projects and
collaboration with academia, practitioners need to be more
proactive. They need to propose research questions, do some
research themselves, and proactively look for opportunities to
create partnerships with academic researchers.

As a take-away message, I propose introducing the “anti-col-
onization test” for projects that involve collaboration between
academic researchers and practitioners. This test requires
repeating the same exercise I did in the beginning: taking
Tom O’Dowd’s claim about general practice research and
replacing the term “general practitioner” with “my own field
practitioner” If the resulting claim even remotely looks as
something that may be true, then the project has failed the
test. It may a good moment to take a step back and rethink
the proposed researcher-practitioner collaboration form.

4. The Four Points of the
Research Compass

Doing research is difficult. Doing research in practice even
more. In this essay I explore what motivates and drives re-
searchers to do research.'

ST

The Flight Director Attitude Indicator (FDAI) of the Apollo Guidance
Computer (AGC). Wikimedia Commons.

This chapter is based on the article The four points of the HCI research compass,
interactions 20, 3 (May 2013), 34-37.

https://doi.org/10.1145/2451856.2451866

The Four Points of the Research Compass 32

Introduction

Most discussions about research in computer sciences (CS)
focus on research methods and skills, on the question of how
research should be conducted (e.g., [1]). Research tools and
methods, however, are only passive instruments in the hands
of motivated researchers. But what exactly motivates and
drives CS researchers? Here I address this question, arguing
that we need to be more thoughtful about our research
motivation, not just our research skills.

Research skills can help us to do the research properly,
but research motivation is the main force behind all of our
research efforts. To support this discussion, and inspired by
recent ideas from philosophy [2], I use the metaphor of a
compass to discuss research motivation on the meta level,
independent of the research methods being used. Using this
metaphor I present a new, higher-level view on CS research
as being driven by four main motivators (Figure 1):

« Curiosity and wonder, where we follow our strong
interests and desires to learn new things;

« Doubt, where we want to obtain deeper and more
certain understanding;

 Belief and vision, where we set or follow research
ideals; and

« Skepticism, where we question the possibility of reach-
ing some research goals.

I argue here that these four directions are legitimate motiva-
tors for doing research, and that we need to support efforts
in all of them. Indeed, each of these motivators has positive
and negative sides, and awareness of the pros and cons can

The Four Points of the Research Compass 33

help us to do better research. I also contend the main question
that we as a community need to answer is not which of these
directions to follow, but rather, what is the right balance
among contributions motivated by all four sides. I illustrate
each of these motivators with concrete examples from the CS

field.

Curiosity
Wonder

Excitement

- Confusi -
Skepticism Bon usion Vision
oredom Belief

Unease

Doubt

Figure 1. The four points on the research compass.

Curiosity and Wonder

As the simplest and the most obvious point of the research
compass, curiosity and wonder describe the natural char-
acteristic of researchers to have a strong interest in and
eagerness to know more about a topic. Many CS research
contributions came from researchers being fascinated by or

The Four Points of the Research Compass 34

curious about some issue, including technology, people, or
interaction between technology and people. Curiosity and
wonder are also closely connected to academic freedom. Brad
Myers emphasized the pivotal role of creative and curious
university researchers in the advancement of the human-
computer interaction (HCI) field [3].

While curiosity and wonder are the driving force behind inno-
vations, they alone are not sufficient for a research contribu-
tion. If overemphasized, they may even produce negative ef-
fects. For instance, they may prevent us from obtaining more
depth in our research. As noted by Saul Greenberg and Bill
Buxton, the CHI conference sometimes favors innovative and
more “curious” solutions at the price of more “doubting” ones
[4]. They argued that contributions that reexamine existing
results are seen as “replications,” non-original contributions
that are not valued highly, and when they are reviewed the
typical referee response is “it has been done before; therefore,
there is little value added.” In addition, as we are working in
a discipline that studies people, we may need to restrain our
curiosity due to a number of sensitive ethical issues.

Doubt

When we make some discovery we may ask ourselves if our
findings are wrong, coincidental, or a result of wishful think-
ing. Such questions are the beginning of doubt, one of the
most important motivators behind research. Any evaluation
can be viewed as an effort to reduce doubts about our findings.
Experimental evaluation, for example, doubts claims in the
form of a null hypothesis, a claim that an observed phenom-
ena has nothing to do with our intervention. We need to invest
effort to disprove the null hypothesis, thereby reducing the

The Four Points of the Research Compass 35

doubt that our findings are accidental. Ethnographic methods
and techniques, such as protocols for interviews, recordings,
and analytic frameworks, such as grounded theory, add rigor
and discipline to studying complex social phenomena. In
this way, they are forcing us to systematically document
and analyze observed phenomena, adding certainty to our
observations and conclusions. Similarly, by publishing our
articles in peer-reviewed venues, we subject our findings to
the doubt of expert peers.

As a research motivator, doubt is primarily a positive force.
Contrary to skepticism, doubt does not question the possibil-
ity of knowing something or the validity of pursuing some
direction. When we doubt some finding, we want to set it
on firmer ground and add more certainty to it. Shumin Zhai
nicely argued for this in his discussion of the importance of
evaluation in HCI:

“It is the lack of strong theories, models and laws that force
us do evaluative experiments that check our intuition and
imagination. With well-established physical laws and models,
modern engineering practice does not need comparative test-
ing for every design. The confidence comes from calculations
based on theory and experience. But lacking the ability to do
calculations of this sort, we must resort to evaluation and
testing, if we do not want to turn HCI into a ‘faith-based’
enterprise” [5].

Too much doubt also has its disadvantages; for example,
it can lead to situations in which we work only on minor
improvements that can be easily tested, but do not produce
enough innovation. This topic has been a subject of discussion
in the CHI community for years (e.g., [4,5]).

The Four Points of the Research Compass 36

Vision and Belief

While the term belief may have a negative connotation in
the scientific world because of its vague definition and as-
sociation with religion, it is difficult to imagine any research
activity without some form of belief or guiding vision. We
normally believe in the importance of doing research in our
domain (and hope that funding agencies share our belief)
even without having strong evidence about the value of doing
such research (yet). The value of “fundamental research,” for
example, may become evident only after a long period, if
ever. In the field of HCI, Buxton talked about the long cycle
of innovation, noting that it may take several decades for a
research innovation to become valuable in practice:

“The move from inception to ubiquity can take 30 years. ... The
first prototype of a computer mouse appeared as a wooden box
with two wheels on it in the early 1960s, about 30 years before
it achieved the level of ‘ubiquity™[6].

Looking at the larger scale, behind many subfields of com-
puter science and HCI we may find a few visionary con-
tributions that have driven and inspired other researchers.
Many core ideas in HCI are inspired by Vannevar Bush’s
“memex” paper [7], J.C.R. Licklider’s vision of networked IT
in the 1960s, and Douglas Engelbart’s NLS (online system)
demonstration at the Fall Joint Computer Conference in San
Francisco in December 1968 [8]. Douglas Engelbart received
the ACM Turing Award in 1997 for “an inspiring vision of the
future of interactive computing and the invention of key tech-
nologies to help realize this vision”. Don Norman’s book The
Psychology/Design of Everyday Things practically defined a
new domain—user-centered design—inspiring thousands of
HCI contributions (Google Scholar citation count close to

The Four Points of the Research Compass 37

10,000) [9]. Similarly, Mark Weiser’s article “The Computer
for the 21st Century” has been an inspiration for thousands
of contributions (Google Scholar citation count above 9,000)
[10]. Visionary contributions can also be a result of a com-
munity effort. Communications of the ACM, for instance,
published a number of special issues introducing a shared
vision for many of the HCI subfields, including perceptual
Uls (2000), attentive Uls (2003), and organic Uls (2008). Similar
roles may be played by workshops or events such as Dagstuhl
Seminars. Such initiatives serve an important role in outlining
or consolidating a new field, defining its basic terminology,
and setting a high-level research agenda.

Vision is a very important component of any community
effort, as shared vision can inspire researchers and enable syn-
ergic development of the field. Such vision can also come from
the outside—for example, from funding agencies. The Euro-
pean Commission (EC), within its Framework Programs, de-
fines themes and “challenges,” such as “pervasive and trusted
network and service infrastructures” and “learning and access
to cultural resources,” which are used to guide and prioritize
the funding of research projects. Similarly, the U.S. National
Science Foundation (NSF) has a number of core programs
aimed at stimulating and guiding research in particular di-
rections, such as “human-centered computing” and “robust
intelligence.”

On an individual level, having a personal vision can help us to
define our research line and identity. A common component
of the academic job application, for example, is the research
statement, in which applicants are expected to express the
future direction and potential of their work and propose a
valuable, ambitious, but realistic research agenda. For per-
sonal development, it is important to continuously work on

The Four Points of the Research Compass 38

the personal vision, and to make it explicit and open to critical
reflection and discussion with mentors and colleagues.

Too much reliance on the vision, on the other hand, may have
some negative consequences. While vision may inspire and
guide research, vision makes sense only if it is followed by a
number of curious and doubting contributions. If we get too
excited about the vision we are following, we may become
less critical about our findings. This can lead to confirmation
bias, a tendency to favor information that confirms our beliefs
or hypotheses. Vision can guide us in the wrong direction.
We may also end up with visions that are too narrow. This
may lead to overspecialization and to situations in which we
are blind to innovative solutions because they are beyond
the scope of any of the currently active visions. In addition,
to be useful, vision should be based on deep knowledge and
understanding of the research field, not on its ignorance.

Vision and belief are much more complex research motivators
than curiosity and wonder. When we are driven by curiosity,
we simply follow interests and the desire to learn something
new. Vision and belief, on the other hand, require longer-term
commitment to some idea, as well as constant effort to focus
and organize research activities.

Skepticism

Skepticism is a loaded term with a number of definitions.
Closest to the meaning I use here is the definition of skep-
ticism as “doubt regarding claims that are taken for granted
elsewhere” [11]. I view research skepticism in a similar fash-
ion, as a reality checker that questions the fundamental
premises we normally take as a given. As such, skepticism
can call attention to the viability, feasibility, or practicality of

The Four Points of the Research Compass 39

a research direction or approach. Contrary to doubt, which
can motivate us to further investigate some topic to obtain
more certainty, skepticism may call us to abandon some line
of inquiry and consider alternatives.

Fred Brooks’s paper “No Silver Bullet—Essence and Accidents
of Software Engineering” is probably one of the best examples
of useful skeptical thought in computer science [12]. Brooks
expressed his skepticism toward approaches to software en-
gineering research that aim to discover a single solution that
can improve software productivity by an order of magnitude.
Brooks seriously questioned the possibility of ever finding
such “startling breakthroughs,” arguing that such solutions
may be inconsistent with the nature of software. Brooks
also made clear that his skepticism is not pessimism. While
Brooks questioned the possibility of finding a single startling
breakthrough that will improve software productivity by an
order of magnitude, he believed that such improvement can
be achieved through disciplined, consistent effort to develop,
propagate, and exploit a number of smaller, more modest
innovations. In “Human-Centered Design Considered Harm-
ful,” Norman was skeptical about naive approaches to human-
centered design (HCD), stating that HCD has become such
a dominant theme in design that interface and application
designers now accept it automatically, without thought, let
alone criticism [13]. The Greenberg and Buxton paper “Us-
ability Evaluation Considered Harmful (Some of the Time)”
provides a similar skeptical view on the HCI practice, encour-
aged by educational institutes, academic review processes,
and institutions with usability groups, which promote us-
ability evaluation as a critical part of every design process
[4]. Based on their rich experiences, they argued that if done
naively, by rule rather than by thought, usability evaluation

The Four Points of the Research Compass 40

can be ineffective and even harmful.

Skepticism can be a useful antidote to too much excitement
or opportunism in doing research. Skeptical contributions, if
well argued, can prevent the wasting of energy and resources
in pursuing wrong directions and stimulate us to rethink our
approach. The same applies on the individual level. Having
curious and enthusiastic students guided by experienced and
more skeptical mentors is a proven and very successful model
for educating researchers.

Too much skepticism, on the other hand, comes with negative
side effects. Chris Welty nicely described this problem as what
he called “unimpressed scientist syndrome” In his keynote
speech at the 2007 International Semantic Web Conference,
Welty portrayed his personal history of strong skepticism
toward many computing innovations that later become very
successful, including email, the World Wide Web, and the
Semantic Web [14]. He argued that this may be a wider
problem, and that many academic researchers are skeptical
by rule rather than by thought, rejecting innovative solutions
without serious consideration with phrases such as “I've seen
this before; this is not gonna work.” Furthermore, if skepticism
is not a well-argued result of long experience, it may trigger
an emotional debate without contributing much to it. Similar
to vision, useful skepticism requires deep knowledge and a
fundamental understanding of the research field. It is not
surprising that many skeptical authors are also authors of
influential visionary contributions.

Skepticism is probably one of the most complex influences on
research. Contrary to doubt, which can rely on a number of
tools and methods (e.g., experiments, ethnographical meth-
ods), there are no simple and structured tools for skepticism.
Useful skepticism requires careful thought, experience, and an

The Four Points of the Research Compass 41

excellent overview of the field.

Conclusion

The four points of our research compass metaphor do not
suggest that research contributions should be motivated by
only one direction. Even individual contributions usually
combine several elements, presenting our discoveries (curios-
ity), for instance, with their evaluations (doubt). In a team
it is good to have individuals with different affinities. At a
community level, it is equally important to have contributions
motivated by all four points. The community cannot develop
without new ideas and new visions, but without a healthy
dose of doubt and skepticism, we can get incorrect results
or go in a faulty direction. It is also the responsibility of the
community to set high standards and maintain the right bal-
ance among contributions originating from different research
motivations.

I hope the research-compass metaphor can help researchers
to be more thoughtful about their professional development
and stimulate them to ask themselves questions such as:

Are we curious enough about topics of our research? Do we
explore enough or do we jump too quickly to tests? Do we
have a plan to maintain our curiosity, such as a sabbatical
leave? * Do we have vision about where we would like to go,
or are we simply following the latest trends? * Do we doubt
our findings enough and are we using the right methods? *
Are we skeptical enough about our own work? Are we too
skeptical as reviewers? Are we more skeptical toward some
contributions and less toward others?

I believe that answering these questions can make us more
thoughtful about our motivation and enable us to make more

The Four Points of the Research Compass 42

informed decisions about our development as researchers, as
well as about the development of our research field.

The Four Points of the Research Compass 43

References

10.

11.

12.

13.

14.

Lazar, J., Feng, J.H., and Hochheiser, H. Research Meth-
ods in Human-Computer Interaction. John Wiley &
Sons, 2010.

Alexander, J. The four points of the compass. Philosophy
87, 1 (January 2012), 79-107.

. Myers, B.A. A brief history of human-computer interac-

tion technology. interactions 5, 2 (March 1998), 44-54.
Greenberg, S. and Buxton, B. Usability evaluation con-
sidered harmful (some of the time). Proc. of CHI ‘08.
ACM, New York, 2008, 111-120.

Zhai, S. Evaluation is the worst form of HCI research
except all those other forms that have been tried. 2003;
www.businessinnovationfactory.com/iss/innovators/ bill-
buxton?®

. Bush, V. As we may think. The Atlantic Monthly 176, 1

(July 1945), 101-108.

Canny, J. The future of human-computer interaction.
Queue 4, 6 (July 2006), 24-32.

Norman, D.A. The Design of Everyday Things. L. Erl-
baum Assoc., Inc., Hillsdale, NJ, 1988.

Weiser, M. The computer for the 21st century. Scientific
American 265, 3 (September 1991), 94—104.
http://en.wikipedia.org/wiki/Skepticism

Brooks, F.P. No silver bullet—Essence and accidents of
software engineering. [IEEE Computer 20, 4 (April 1987),
10-19.

Norman D.A. Human-centered design considered harm-
ful. interactions 12, 4 (July 2005), 14-19.
http://videolectures.net/iswc07_welty_hiwr/

*http://www.shuminzhai.com/papers/EvaluationDemocracy.htm
*http://www.businessinnovationfactory.com/iss/innovators/bill-buxton

http://www.shuminzhai .com/papers/EvaluationDemocracy.htm
http://www.shuminzhai .com/papers/EvaluationDemocracy.htm
http://www.businessinnovationfactory.com/iss/innovators/bill-buxton
http://www.businessinnovationfactory.com/iss/innovators/bill-buxton
http://www.shuminzhai .com/papers/EvaluationDemocracy.htm
http://www.businessinnovationfactory.com/iss/innovators/bill-buxton

5. Insights from the Past

Research community mostly aims at creating ground-break-
ing and innovative solutions. Looking back at older and histor-
ical developments is rarely considered interesting or relevant.
However, in the domain of software engineering, lessons from
the past are still actual. That was one of the reasons for me
to start to work on creating the website that makes it easier
to explore the rich history of software engineering. In this
chapter I reflect on lessons learned, and the value of studying
the past so that it might not be reinvented but become a source
of inspiration for the present and future.'

A snapshot from IEEE Software history site, showing covers from 1980s.

"This chapter is based on the article Insights from the Past: The IEEE Software
History Experiment, IEEE Software 34, 4 (July-August, 2017), 71-78.

https://doi.org/10.1109/MS.2017.101
https://doi.org/10.1109/MS.2017.101

Insights from the Past 45

Introduction

The [EEE Software history website? is a curated site comple-
menting the official IEEE Software website®. It offers a look at
IEEE Software’s history at a glance. Here, I discuss its genesis’
how it illustrates the practical value of historical data, and
how it offers a glimpse into the magazine’s future.

The Website’s Genesis

The website has developed organically. There never was
an official project to develop an elaborate overview of the
magazine’s history. Rather, the website evolved somewhat
out of curiosity and as a volunteer initiative, partly in reaction
to positive feedback about its developing content.

The idea for the website arose during the 2016 IEEE Software
editorial-board meeting at the Software Improvement Group
(SIG) in Amsterdam. As an organizer of the meeting, I was
looking for ways to create an IEEE Software atmosphere. I
decided to print the magazine covers and put them up as
wallpaper (see Figure 1).

The board members, who were from both academia and
industry, liked such an overview of topics and trends that
were once considered important. For many, it brought back
memories or created awareness of missed topics. In addition,
the covers are attractive. SIG kept them on the wall for several
months after the meeting.

After receiving requests to share digital versions of the covers,
I created a simple website to display them. Thus, the original
idea of the history website was only to create that display.

2obren.info/ieeesw
Swww.computer.org/software

Insights from the Past 46

Figure 1. IEEE Software front covers displayed at the 2016 editorial-
board meeting.

Insights from the Past 47

The Website’s Content

While collecting the covers, I discovered that the July/August
2017 issue would be the 200th issue. So, I decided to use the
history website to celebrate this anniversary. I extended the
website with several types of content, including these:

« More than 1,000 quotes. This was the most rewarding
part of creating the site. These curated quotes make the
website much more than a simple metadata index. The
quotes have also been important in creating interesting
content to promote the history of IEEE Software on
social media such as Twitter because they’re short but
informative.

« Indexes of all 3,000+ articles and 4,000+ authors. These
indexes enable quick exploration of articles and authors
in a historical context. I also added a historical timeline
for search results.

« A citation index (based on Google Scholar searches) cor-
related with the publication year. This helps show IEEE
Software articles’ broader impact. It also aids identifying
the most cited articles, authors, or themes.

For more on the website’s content, see the sidebars.

Insights from the Past 48

Historical Data’s Practical Value

Although, at the time of writing of this artcile, the history
website was just six months old, I had gathered enough
experience to reflect on its value. I classify these lessons
learned into the following categories.

Seeing Trends

Historical data enables us to see trends in software engi-
neering research and practice. In many aspects, this is the
history website’s main value, compared to digital libraries
such as the IEEE Computer Society Digital Library (CSDL;
www.computer.org/csdl) and IEEE Xplore (ieeexplore.ieee.org).

To illustrate the possibilities of seeing trends, Figure 2 shows
word clouds created from terms in IEEE Software article titles,
for four decades. Although IEEE Software covers diverse
topics, each decade has had a few topics that were more
popular.

In the 1980s, topics related to different programming paradigms
were popular. For instance, parallel and distributed program-
ming were important topics. Six theme issues and cover
articles discussed programming:

+ 1984, no. 2. Programming: Sorcery or Science?

« 1986, no. 4. Firmware Engineering: The Interaction of
Microprogramming and Software Technology.

« 1988, no. 1. Parallel Programming: Issues and Questions.

+ 1988, no. 3. What Is Object-Oriented Programming?

+ 1989, no. 4. Parallel Programming: Harnessing the Hard-
ware.

Insights from the Past 49

+ 1989, no.5. A Compositional Approach to Multiparadigm
Programming.

In the 1990s, the focus shifted toward process-related topics.
Measurements, metrics, and quality assurance also received
significant attention. Ten theme issues covered process man-
agement and metrics (and their combination):

* 1990, no. 2. Using Metrics to Quantify Development.

» 1991, no. 4. Process Assessment.

« 1992, no. 4. Reliability Measurement.

1993, no. 4. The Move to Mature Process.

* 1994, no. 4. Measurement-Based Process Improvement.

* 1996, no. 4. Managing Large Software Projects.

+ 1997, no. 2. Assessing Measurement.

+ 1997, no. 3. Managing Risk.

+ 1998, no. 4. Menace or Masterpiece? Managing Legacy
Systems.

« 1999, no. 2. Metrics for Small Projects.

The 2000s were clearly the age of requirements engineer-
ing. Overall, IEEE Software has published 163 articles with
“Requirements” in the title. Of those articles, 91 (56 percent)
were published in the 2000s. Seven theme issues covered
requirements engineering;:

« 2000, no. 3. Requirements Engineering: Getting the De-
tails Right.

2003, no. 1. RE 02: A Major Step toward a Mature
Requirements Engineering Community.

* 2004, no. 2. Practical Requirements Engineering Solu-
tions.

Insights from the Past 50

+ 2005, no. 1. Innovation in Requirements Engineering.

« 2006, no. 3. RE 05: Engineering Successful Products.

+ 2007, no. 2. Stakeholders in Requirements Engineering.
« 2008, no. 2. Quality Requirements.

In the 2010s, the focus shifted toward architecture:

2010, no. 2. Agility and Architecture.

« 2013, no. 2. Twin Peaks of Requirements and Architec-
ture.

« 2013, no. 6. Architecture Sustainability.

« 2015, no. 5. Software Architecture.

« 2016, no. 6. The Role of the Software Architect.

Overall, IEEE Software has published 167 articles with “Ar-
chitecture” or “Architect” in the title. Of those articles, 97 (58
percent) have been published since 2010.

51

Insights from the Past

%ty

information measurement 00%

mﬂqna&ement
WL
el
S, 1990s
$ B e

& @ % ‘;\;‘,‘ﬁ

”«aw

g?f
Yy
N
207
N

LY ’: 0”"{’!:“'-:: construction

&s“i a}é I3 \0‘2,, cngincer st ;:‘

) %@aﬁ”‘?ﬁ”’?’”g‘% %{
=requirements.
L > ™ web a.,,,,,,;‘.’_' TS
stiig */

\m”:; ?
“DIOJECT, ainem. "2 2000s
;design A

2010s

o Dractice _?Q 0
'050[6‘ é’g\

\;‘: data businés’_4
AY § & e Y,

78\ % 2%
Loy 2%, N

‘#‘ I//af‘ig"“wég, 4 <)
X “ cloud “i:,,‘h? e
o,

lig”
% gy &

impact
w-,,,%%”‘ "'%,, i oy
SEPIW/AN

Figure 2. Word clouds with terms in the titles of IEEE Software articles.

1980s. 1990s. 2000s. 2010s.

Insights from the Past 52

Preventing Knowledge Inflation

There’s a lot of forgetting, and a lot of “never knew that”in our
field today [1]. —Robert Glass Those who cannot remember the
past are condemned to repeat it. —George Santayana

Knowing history can help us avoid repeating errors and
building on each other’s work. As Robert Glass noted, we
keep forgetting early contributions and often reinvent the
wheel. In my experience, much current software engineering
work, especially practitioner’s books and posts, aren’t well
connected to previous work. Similarly, Martin Fowler talked
about semantic diffusion, which occurs when a definition
gets spread through the wider community in a way that
weakens it [2]. Often this weakening is a consequence of lack
of awareness of the original work related to the definition.

I call this problem the inflation of software engineering
terms and knowledge (see Figure 3). The difficulty of finding
previous work often leads to reinvention of concepts and
solutions. The reinvented solutions get documented and pub-
lished, leading to the invention of new terms and creation of
isolated content (unconnected to previous work). These new
terms and content increase the already significant number of
articles and posts, which makes finding previous work even
more difficult. New cycles of such reinventions are inevitable.

Insights from the Past 53

Difficult to find
previous work
Number of articles
and posts grows

Re-inventing the
wheel

New terms invented

and new isolated
content created

Figure 3. The vicious cycle of inflation of software engineering terms
and knowledge. New cycles of such reinventions are inevitable.

Unfortunately, IEEE Software is partly to blame for this
cycle. Just by looking at the covers, you can see that many
themes repeat. For instance, there have been four “business
of software” issues:

« 2002, no. 6. The Business of Software Engineering.
2004, no. 5. The Business of Software Engineering.
« 2011, no. 4. Software as a Business.

e 2016, no. 5. The Business of Software.

Looking at the introductions of the later theme issues, you can
see that none of them connects to any of the previous ones.
Nor do they relate to the brilliant but largely forgotten 1984
issue (no. 3) on Capital-Intensive Software Technology.

IEEE Software provides content that can help root new con-
tributions in previous solid peer-reviewed research and prac-
tices. Many IEEE Software authors have been the originators

Insights from the Past 54

of nowadays mainstream concepts and ideas. For examples,
10 of the 17 authors of the “Manifesto for Agile Software
Development”3 have written for IEEE Software: Kent Beck,
Alistair Cockburn, Ward Cunningham, Martin Fowler, James
Grenning, Andrew Hunt, Ron Jeffries, Robert Martin, Steve
Mellor, and Dave Thomas.

Detailed, easily accessible historical data can help slow down
the inflation of knowledge by making it easier to find and
connect to previous work and ideas.

Being a Source of Inspiration

Another value of easily accessible historical information is
in its relevant and inspirational content. I was surprised to
discover that many articles from the 1980s and 1990s are
still relevant. For example, consider this quote from Bruce
Shriver’s introduction of the first IEEE Software issue in 1984:

Many of the challenges facing the software industry today
are a direct result of our insatiable appetite for new com-
puter-based systems applications. Others confront us simply
because we have not managed to successfully solve a large
number of problems that we ourselves created many years ago.
Specifically, we still, by and large, lack the necessary methods
to increase our ability to design and implement high-quality
systems [4].

This quote still accurately summarizes current software engi-
neering challenges.

I've come across quite a few such insightful pieces. For my
daily work, I've found early work on software architecture,
quality, and maintenance still insightful and inspiring. Here
are three of my favorite quotes:

Insights from the Past 55

Architecture is not so much about the software, but about
the people who write the software. The core principles of
architecture, such as coupling and cohesion, aren’t about the
code. The code doesn’t “care” about how cohesive or decoupled
it is; if anything, tightly coupled software lacks some of
the performance snags found in more modular systems. But
people do care about their coupling to other team members
[5]. We are so used to the notion that quality must take a back
seat to productivity that we continue to put up with practices
that we know will produce software of lesser quality [6]. The
greater speed of technical change means that capital invest-
ment must be recovered more quickly and that enhancement
and evolution consume proportionately more resources than
in a slowly changing technology. This contributes to the fact
that maintenance and enhancement are the dominant costs in
the software life cycle today [7].

[particularly like the clarity of definitions and research
questions in the early articles, which often have defined a new
field. Knowing such early work also helps you have authority
in the field.

In my practical work as a consultant, I've discovered the value
of historical content as an antidote to hype. Nothing cools
down a heated sales pitch about a “revolutionary” new tech-
nology more than showing the presenter a 30-year-old article
describing the same or a similar concept, sometimes with
empirical studies, and asking how the “new” solution differs.
I've used this tactic successfully a few times. For example,
people presenting a new low-code platform are often proud
of the platform’s use of visual programming that supposedly
implements a new programming paradigm. However, as Shi-
Kuo Chang’s 1987 survey on visual languages shows, many
such visual-programming techniques are more than 30 years

Insights from the Past 56

0ld.8

I also came across many inspirational but less known and
unexpected pieces, such as great articles from Alan Kay and
Christopher Alexander:

You could ... say that the main business of everyone on earth
is to help everyone else—including ourselves—get enlightened
because the technology is getting more and more dangerous
[9]. What I am proposing ... is a view of programming as
the natural, genetic infrastructure of a living world which
you/we are capable of creating, managing, making available,
and which could then have the result that a living structure in
our towns, houses, work places, cities, becomes an attainable
thing. That would be remarkable. It would turn the world
around, and make living structure the norm once again,
throughout society, and make the world worth living in again

[10].

And this just scratches the surface. Please explore these quotes
yourself, and use social media to let everyone know when you
find some new inspirational pieces.

Another piece of inspiration is what I call “the art of IEEE
Software” The covers, as well as the article illustrations,
depict key software engineering concepts in an original and
artistically pleasing way.

Having Intrinsic Historical Value

History has value in itself. People care about it. For example,
Alison Gopnik explained that acknowledging the truth about
the past, good or bad, individually or collectively, is deeply
important to us as humans, even when it has no immediate
effect on the present [11]. I think the same concept applies

Insights from the Past 57

to the history of software engineering. Many of us software
engineering professionals find it important to acknowledge
the truth about the past for its own sake, even when it has no
immediate effect on what we do now.

Gopnik also noted that many parents spend much energy
trying to determine their children’s future. However, parents
can’t give their children a good future, but they can give
them a good past. That also applies to us. Can we as poten-
tial authors determine software engineering’s future? Who
knows? We can try. But it’s not completely in our hands. And
history teaches us that we have, on quite a few occasions,
been wrong. For instance, Fred Brooks, in an excerpt from
his book The Mythical Man-Month that appeared in IEEE
Software, said, “[David] Parnas was right, and I was wrong
[about information hiding] [12].” But can we give software
engineering a good history? This is definitely much more
under our control.

Defining IEEE Software’s Future

Who controls the past ... controls the future: who controls the
present controls the past. —George Orwell

Finally, one value of maintaining an accessible website about
our history is being able to see how our past impacts IEEE
Software’s future. Orwell’s quote from 1984 (don’t forget that
IEEE Software started in 1984) in many ways reflects the
magazine’s situation. The most obvious example is the impact
factor—the frequency with which the average article or paper
in a publication has been cited in particular years. Although
the impact factor is based on past data, it directly influences
a publication’s reputation and future. A high impact fac-
tor normally attracts more high-quality contributions. High-

Insights from the Past 58

quality articles and papers are normally cited more, which
might further increase the impact factor. And vice versa:
publications with a low impact factor normally attract fewer
high-quality contributions, which might start a vicious cycle
of decreasing impact factors.

Up to now, the IEEE Software history website has been an ex-
periment. It’s still a prototype, and we’re still experimenting
with different ways of presentation, adding new content and
releasing changes frequently.

You can help contribute to this history. For example, write
great new articles for IEEE Software. Invest the effort to find
previous research and connect your research to it. Or, promote
historical content in any medium—for example, by using that
content in education and as inspiration in daily work.

Sidebar A: Other Histories of Soft-
ware Engineering

The IEEE Software history website (obren.info/ieecesw)
complements other resources describing software engi-
neering history, such as these (links to which are also on
the website):

« “History of Software Engineering”; en.wikipedia.org/
wiki/History_of_software_engineering?

« N. Wirth, “A Brief History of Software Engineer-
ing,” IEEE Annals of the History of Computing, vol.
30, no. 3, 2008, pp. 32-39.

« “A Brief History of Software Engineering,” Viking
Code School; www.vikingcodeschool.com/ software-
engineering-basics/ a-brief-history-of-software-en-
gineering.

https://en.wikipedia.org/wiki/History_of_software_engineering
https://en.wikipedia.org/wiki/History_of_software_engineering

Insights from the Past

« A Brennecke and R. Keil-Slawik, Eds., Position Pa-
pers for Dagstuhl Seminar 9635 on History of Soft-
ware Engineering? 1996.

*https://en.wikipedia.org/wiki/History_of software_engineering
Bvww.dagstuhl.de/Reports/96/9635.pdf

59

Sidebar B: IEEE Software Bibliomet-
ric Data

The IEEE Software history website (obren.info/ieeesw)
combines data from the IEEE Computer Society Digital
Library (CSDL), IEEE Xplore, and Google Scholar. The
CSDL and Xplore provide useful data about the number
of articles and authors.

Approximately 4,500 IEEE Software articles are indexed
in Xplore. However, this number includes front and back
covers, tables of contents, and ads. I built a script that
extracts only articles with authors. This leaves around
3,250 “proper” articles. Approximately half of those ar-
ticles are peer reviewed; the other half includes columns
and invited content.

In total, more than 4,200 authors have contributed to
IEEE Software. Of those authors, 819 have contributed
multiple times—for example, Diomidis Spinellis (75 arti-
cles), Grady Booch (68), Robert Glass (57), Christof Ebert
(46), and Forrest Shull (43). These 819 authors authored
or coauthored approximately two-thirds of the articles.
Fifty-one percent of the articles (mostly department arti-
cles) have one author; 49 percent have multiple authors.

Figures A and B shows the number of authors and articles

https://en.wikipedia.org/wiki/History_of_software_engineering

Insights from the Past

per year.

The history website also contains citation data extracted
from Google Scholar in February 2017:

o The cumulative IEEE Software citation count is
161,042 (the sum of all “cited by” fields).

+ The magazine’s h-index is 181; approximately one-
half of the citations are from these top 181 articles.

« The most cited year is 1990, followed closely by
2003 and 1994.

« The most cited articles are “The 4+1 View Model of
Architecture” (2,786 citations), “Reverse Engineer-
ing and Design Recovery: A Taxonomy” (2,594 cita-
tions), and “Software Risk Management: Principles
and Practices” (1,925 citations).

Figure C shows the number of TEEE citations per year of
publication.

o s e 5 i B 15
g 2B uey iy 2 ey 22 u oM g 15
@ e 5 © . o g
1984 1985 1988 1989 1990 1991 1992 1993 1994 1995 19 4 2005

1986 1987 996 1997 1998 1999 2000 2001 2002 2003 20 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure A: The number of authors per year in IEEE Software.

199 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Figure C: The number of IEEE citations per year of publica-
tion for IEEE Software.

60

Insights from the Past

61

Sidebar C: History Tweets—Injecting
the Past into Social Media

The IEEE Software history website (obren.info/iecesw)
also promotes IEEE Software on social media. From Octo-
ber 2016 to June 2017, to draw attention to the magazine’s
200th issue (July/Aug. 2017), I've been daily tweeting
IEEE Software covers and quotes and interesting histor-
ical findings. In this way, each IEEE Software issue has
been mentioned at least once before the publication of
our 200th issue.

The tweets have provided an interesting way to engage
with a broader, younger audience. Many of the old ar-
ticles from the 1980s have received significant attention.
Social-media interaction has also enabled us to reconnect
with some of the early authors.

Also, on Twitter under #SE_history (twitter.com/hashtag/se_-

history) are more than 500 tweets about IEEE Software
history. We plan to tweet there again as new issues are
added. Figure D shows a few interesting tweets.

Figure D: Some interesting tweets from the IEEE Soft-
ware history website:

Insights from the Past

#SE_History @ieeesoftware Jan 1984 review
of @Grady_Booch's book and his crazy idea
of "object-oriented design".
obren.info/ieeesw/

IEEE

Software Engineering with Ada—
Grady Booch (The Benja-
min/Cummings Publishing Com-
pany, Inc., Menlo Park, Calif.,
1983, 491 pp., $20.35)

The Ada programming language
has finally, in 1983, achieved not
perfection, but ANSI standardiza-
tion with almost-production-level
compilers that are not bug-free, but
validated. Ada is Pascal ‘‘grown
up.”” We now have a tool that em-
bodies modern software engineering
principles and supports computer
programming as a human activity. Its

Booch offers a software design
methodology, which he calls “‘ob-
ject-oriented design’’ in contrast to
earlier popular methods he desig-
nates as either functional or data-
oriented. In contrast to suggestions
that we either identify a program’s
principal function and describe it in
the top box in a hierarchy chart or
carefully identify the patterns of data
and their flows, Booch suggests,
“‘Define the problem; develop an in-
formal strategy; formalize the
strategy.”” This is like classical prob-
lem solving, and it, like Ada, im-
poses no (or comparatively few) con-
straints on the early stages of the
process.

IEEE Software, January 1984, page 119

4:44 PM - 9 Nov 2016

12Retweets 19Likes @, § @ s O 0 %0 e

Insights from the Past 63

The story of C++ >> CPP::CPP(Programmer
*p) { if (p->serious) p->enjoyment++; }
@ieeesoftware Jan 1986 #SE_history
obren.info/ieeesw/

"The C++ programming language was designed to make the task
of programming more enjoyable for the serious programmer.”

Bjarne Stroustrup, IEEE Software, January 1986, p. 71

1:01 PM - 21 Nov 2016

13Retweets 11lkes B O QDX L, DPPO O

Insights from the Past

The first computer bug - taped to the the first
bug tracking system, #SE_history
@ieeesoftware May 1987 obren.info/ieeesw/?
quotes

"[T]he term [debugging] was first applied to a
hardware bug - a moth in the circuitry of Mark II'

(R.E. Seviora, Knowledge-Based Program Debugging
Systems, IEEE Software 1987, no. 3, p. 20)

1LY DT l‘+‘- Co tne Sine check
1$25 AIQ».YzJ H‘;u Jn fgc(ier ("lj?s‘l‘ L)

5 @"—-k%*7° ?cmg‘ =

A \Mo?ﬁb 'n I"Q\q\a\

g o0t Acbral S o f bug being founl.

ue M L&m«

A computer log entry from the Mark 1, with a moth taped to the page

10:59 AM - 30 Nov 2016

18Retweets 15Lkes G OB S PDPOP

64

Insights from the Past

#Architecture is not about #software but
about #people.

#Code doesn't care about how cohesive or
decoupled it is.

@jcoplien #SE_history'99

"[A]rchitecture is not so much about the

software, but about the people who write the

software. The core principles of architecture,

such as coupling and cohesion, aren't about the SOFTWARE
code. The code doesn't 'care’ about how ==
cohesive or decoupled it is; if anything, tightly EHEE"H[HUP
coupled software lacks some of the performance -
snags found in more modular systems. But
people do care about their coupling to other
team members. " (James O. Coplien, Guest
Editor's Introduction: Reevaluating the
Architectural Metaphor-Toward Piecemeal
Growth, IEEE Software 1999, no. 5, p. 40)

8:49 AM - 24 Feb 2017

16 Retweets 26 Likes @ » 9‘ g 0 a,‘;@

"The best way | know to #deliver sooner is to
do less."

J. B. Rainsberger @jbrains
#SE_history @ieeesoftware 2007

"Experienced programmers plan, while junior programmers jump into
their work. Some simpler personal planning techniques can help you
eliminate waste when you work, write less code, design more simply,

inject fewer defects, and generally deliver sooner. ... [T]he best way | #
know to deliver sooner is to do less." ().B. Rainsberger, Personal
Planning, IEEE Software 2007, no. 1, p. 16) 2007

4:57 PM - 17 Apr 2017

42Retweets 43Lkes @ @6 @ + e Qe

o] n 4 QO 4 If

65

Insights from the Past 66

References

1. R.L. Glass, “Silver Bullet’ Milestones in Software His-
tory,” Comm. ACM, vol. 48, no. 8, 2005, pp. 15-18.

2. M. Fowler, “Semantic Diffusion,” Dec.2006; martinfowler
.com/bliki/SemanticDiffusion.html®.

3. K. Beck et al., “Manifesto for Agile Software Develop-
ment,” 2001; agilemanifesto.org.

4. B.D. Shriver, “From the Editor-in-Chief,” IEEE Software,
vol. 1, no. 1, 1984, pp. 4-5.

5. J.O. Coplien, “Reevaluating the Architectural Metaphor:
Toward Piecemeal Growth,” IEEE Software, vol. 16, no.
5, 1999, pp. 40—44.

6. P. Hsia, “Learning to Put Lessons into Practice,” IEEE
Software, vol. 10, no. 5, 1993, pp. 14-17.

7. P. Wegner, “Capital-Intensive Software Technology,” IEEE
Software, vol. 1, no. 3, 1984, pp. 7-45.

8. S.-K. Chang, “Visual Languages: A Tutorial and Survey,”
[EEE Software, vol. 4, no. 1, 1987, pp. 29-39.

9. “Inventing the Future” (interview with A. Kay), IEEE
Software, vol. 15, no. 2, 1998, pp. 22-23.

10. C. Alexander, “The Origins of Pattern Theory: The Fu-
ture of the Theory, and the Generation of a Living
World,” IEEE Software, vol. 16, no. 5, 1999, pp. 71-82.

11. A Gopnik, The Philosophical Baby, Farrar, Straus and
Giroux, 2009.

12. F. Brooks, “The Mythical Man-Month after 20 Years”
(book excerpt), IEEE Software, vol. 12, no. 5, 1995, pp.
57-60.

“https://martinfowler.com/bliki/SemanticDiffusion.html

https://martinfowler.com/bliki/SemanticDiffusion.html
https://martinfowler.com/bliki/SemanticDiffusion.html
https://martinfowler.com/bliki/SemanticDiffusion.html

6. The Researchers-
Practitioners
Manifesto

My goal is to stimulate practitioners to start doing research
in practice and to organizes themselves OUTSIDE current
academic structures. I believe that the only way to bridge
the practice-research gap is for practitioners to start doing
research and to bottom-up build necessary organizations and
structures.

The Researchers-Practitioners Manifesto 68

6.1 As Individuals

We recognize that being a researcher is a
call rather than a job title.

Research can be conducted in many settings and outside
research institutions. Research is conducted by motivated and
competent individuals and groups, not necessarily working in
research institutions, or R&D departments.

We investigate realistic real-world settings.

We conduct our research in a messy world of practice, in
realistic settings, with real users.

We view research as primarily being about
knowledge and secondary about research
methods.

Research methods are a means to obtain knowledge. Knowl-
edge is power.

We choose research methods based on the
questions that need to be answered, not
the other way around.

No method is universally good or bad. It may be more or less
appropriate for a research question.

The Researchers-Practitioners Manifesto 69

We prioritize our research questions
according to their relevance and
importance.

We avoid choosing research questions according to how well
they fit our preferred research methods. We value knowledge,
impact, and relevance more than obtaining grants, patents, or
publications.

We value knowledge over innovation.

We do research to obtain knowledge. We reuse existing knowl-
edge as much as possible. We avoid re-inventing the wheel.
We always connect our research to the existing body of
knowledge. We know our field and its history. Our work is
always standing on the shoulders of the giants. We make this
fact explicit.

We share our results and make our claims
explicit, public, and open to critical
reflection and discussion.

We transparently report research results. Our methods, moti-
vation, funding, and conflicts of interests are always explicitly
stated.

The Researchers-Practitioners Manifesto 70

6.2 As a Community

We recognize the importance of belonging
to and building a community of peer
researchers-practitioners.

We organize ourselves in communities to share knowledge,
peer-review each other work, and connect and make easily
accessible our work.

We recognize the importance of
peer-review.

It is easy to get carried away when doing creative and exciting
work. We need constructive feedback to avoid making errors.
Research contribution is not research contributions if it has
not been peer reviewed. We pro-actively seek peer review of
our work. We pay back by peer reviewing others work.

We value collaboration and results over
belonging to a formal institution.

We recognize that the community is a group of researchers
collaborating to make each other’s research better, not neces-
sarily a formal organization.

IT DESIGN &
RESEARCH

7. Design-Based
Research

The basis for most of my research is design. I build experimen-
tal systems to explore new domains. This essay discusses why
design can be a basis for doing research, focusing on what we
can learn when we engage in design of computer systems.'

Margaret Hamilton during her time as lead Apollo flight software
designer. Wikimedia Commons

'This chapter is based on the article Design-based research: what we learn when
we engage in design of interactive systems, interactions 18, 5 (September 2011), 56-59.

https://doi.org/10.1145/2008176.2008189
https://doi.org/10.1145/2008176.2008189

Design-Based Research 73

Introduction

More than 20 years ago, Fred Brooks asked, “Is interface
design itself an area of research, producing generalizable
results?” [1]. He elaborated that a major issue that puz-
zles the human-computer interaction community is the ten-
sion between narrow truths proved convincingly by statis-
tically sound experiments, and broad truths, generally ap-
plicable, but supported only by possibly unrepresentative
observations—that is, results indisputably true but disputably
applicable, and results indisputably applicable but perhaps
overly generalized.

Brooks’ question is still relevant. In this chapter, I explore
the view that the design of complex and novel interactive
systems can itself be an area of research, complementing other
forms of research, and that it is capable of producing useful
and trustworthy results. I call this form of research design-
based research, a method of inquiry aimed at exploiting
the opportunities that designing complex interactive systems
provides to advance our understanding of the problem we are
solving, the process we are following, and the solution we
are building. While many designers and researchers already
conduct this form of research, and the idea of design-based
research is not new (for example, [2]), there have not been
many attempts to explicitly define this method and address
the following questions:

« What can we learn when we engage in the design of
interactive systems?

« What kind of generalizable knowledge can we get from
design?

« What is the relationship of design-based research to
theoretical and experimental methods?

Design-Based Research 74

« Why can design reveal things that other research meth-
ods cannot?
« What makes design-based research trustworthy?

What We Learn When We Engage in Design

Design can be described as a sequence of decisions made to
balance design goals and constraints. In any design activity,
designers make a number of decisions, trying to answer the
following questions [3]:

« How will the design process advance?
« What needs and opportunities will the design address?
« What form will the resulting product take?

These decisions must be made in every design effort, although
they may not be explicit, conscious, or formally represented.
In routine design, these decisions are straightforward, requir-
ing little learning by designers. In challenging or innovative
designs, however, these decisions can be complex and interde-
pendent, requiring extensive investigation, experimentation,
and iterative improvement. In such situations, designers may
acquire important new understandings. This ability to acquire
new knowledge through design provides the basis for doing
research, which aims at capturing this new knowledge and
making it available to a broader audience. We may group
lessons that we learn in design into three categories: design
procedures, problem analysis, and design solutions.

A design procedure specifies which processes and individuals
are involved in a design. Designers often have to develop spe-
cialized procedures to respond to a specific design challenge
or the context in which the design is being constructed.

Design-Based Research 75

Problem analysis describes our current understanding of the
problem we are facing. One of the characteristics of design is
that we never start with a clear understanding of the problem,
and one of the chief services of a designer is helping clients
to discover what they want designed [4]. Design problems
are often full of uncertainties about both the objectives and
their priorities, which are likely to change as the solution
implications begin to emerge. Problem understanding evolves
in parallel with the problem solution, and many components
of the design problem cannot be expected to emerge until
some attempt has been made at generating solutions [5].
Simon, in what he calls “designing without final goals,” wrote
that a goal of design may actually be understanding the
problem and generating new goals, elaborating that the idea
of final goals and a static problem definition is inconsistent
with our limited ability to foretell or determine the future [6].

A design solution describes the resulting product, the outcome
of designers’ efforts to address challenges, satisfy constraints,
exploit opportunities, and balance the trade-offs identified in
the problem analysis. The design solution evolves over the
design process as designers deepen their understanding about
the design context and problem.

Generalizable Knowledge

To be regarded as a research contribution, design activity
should go beyond simply refining practice and also address
theoretical questions and issues. Design-based research ex-
tends ordinary design activity with a goal of developing gen-
eralizable knowledge. In a normal design effort, the primary
goal is to create a successful product, and lessons learned are
restricted to the particular design and the people involved

Design-Based Research 76

in it. In the process of generalizing, however, a designer-
researcher expands his focus beyond the current design situa-
tion, viewing the design problem, solutions, and procedures as
instances of more general classes. For each of the collections
of lessons learned, we may identify the corresponding type
of generalization: domain theories, design frameworks, and
design methodologies [3].

A domain theory is the generalization of a problem analysis.
A domain theory might be about users of interactive systems
and how they learn to use and interact with the systems, or
about the context of the system usage and how it influences
the user and interaction. A domain theory is a means of un-
derstanding the world, not the design solution or procedure.

A design framework is a generalization of the design solution.
Design frameworks describe the characteristics that a design
solution should have to achieve a particular set of goals in a
particular context. In other words, a design framework repre-
sents a collection of coherent design guidelines for a particular
class of design. Design patterns and software architectures are
prominent examples of this class of generalization.

A design methodology is a generalization of a design proce-
dure. In contrast to design frameworks, a design methodology
provides guidelines for the design process rather than the
product. In general, a design methodology describes a process
for producing a class of design solutions, the types of expertise
required, and the roles of people with these types of expertise.

In general, design-based research cannot develop “grand” or
universal theories and frameworks. Rather, it develops gen-
eralizable knowledge with an intermediate theoretical scope,
covering a gap between a narrow explanation of a specific
design and a broad, more generic account that does not limit

Design-Based Research 77

the design to a particular situation.

Design-Based Research and Other
Research Methods

Generalized knowledge can also be derived by using other
empirical or theoretical research methods. Design-based re-
search, however, can produce knowledge that normally could
not be generated by isolated analysis or traditional empiri-
cal approaches, and therefore complements existing empiri-
cal and theoretical research methods. Design-based research
facilitates disciplined, systematic inquiry into a real-world
context while simultaneously doing justice to its complexity.
It is conducted in messy, but entirely realistic, situations and
while it produces claims with less certainty and replicability
than other research methods, it can extend our area of inquiry
beyond the scope of these methods.

Design-Based Research Versus Other Empirical Research
Methods

Controlled experiments are one of the most powerful and
conclusive forms of empirical research, used to establish the
relationship between the cause and the effect by manipulat-
ing an independent variable to see how it affects a depen-
dent variable. Although conducting experimental research
has enormous benefits, it also has some serious limitations.
The controlled experiment may be conducted only if we
know the relevant variables involved in research, we can
define important relationships among the variables, and we
can control all extraneous variables that might affect the
outcome. These conditions significantly limit the scope of
experimental research, and in many real-world situations we
cannot fulfill them, as a researcher usually cannot maintain

Design-Based Research 78

control over all factors that may influence the result of an
experiment. Attempting to simplify a real-world situation
so it can be subjected to experimental research often leads
to studying unrealistically simple situations. Attempting to
establish an experimental control in a real-world setting, on
the other hand, may lead to negative phenomena, such as the
Hawthorne effect, in which those who perceive themselves
as members of the experimental, or otherwise favored, group
tend to outperform their controls, often regardless of the
intervention.

Design-based research can produce knowledge that normally
could not be generated by theoretical analysis or traditional
empirical approaches.

Although significantly different, controlled experiments and
design-based research are compatible forms of research that
can be and often are used together. Controlled experiments,
for example, can guide design decisions and test particular
elements of a design on a smaller scale and in more controlled
conditions. A decision about which input control to use in a
user interface, for instance, may be based on the results of
a controlled experiment comparing the efficiency of users’
data input with several alternatives. Controlled experiments
may provide reliable information that something “worked,”
but they often do not provide sufficient information about
exactly what it was that worked, or why or how it worked.
Design-based research can help us to characterize and iden-
tify relevant variables, create an explanatory framework for
the results of the experiments, and provide us with more
insights about why and how some elements of a design work.

Ethnographic research and field studies attempt to charac-
terize relationships and events that occur in some setting to
produce rich descriptions that make it possible to understand

Design-Based Research 79

what is happening and why. In contrast to design-based
research, however, there is no attempt to change this situa-
tion. Design-based research complements these methods by
enabling us to learn more about the real world by changing it
and reflecting on our experiences in understanding problems,
design solutions, and procedures.

Design-Based Research Versus Theoretical Research

Design-based research requires an alternative view on the
relationship between theory and practice in which neither is
taken as primary. Design activity is often driven by existing
theories, and at the same time it can provide a constructive
environment for theory development. Design process can
often reveal theoretical inconsistencies more effectively than
analytical processes, while designing a concrete system based
on some theory requires that it be fully specified [4]. On
the other hand, the development of theoretical constructs
and standards without their grounding in a concrete design
often leads to a range of problems, as shown in Henning’s
discussion about the reasons for the decline of CORBA (Com-
mon Object Request Broker Architecture) [7]. Henning con-
cluded that standards consortia must ensure they standardize
only existing best practices and that no standard should be
approved without a reference implementation and without
having been used to implement a few projects of realistic
complexity.

Why Design Can Reveal Things That Other
Methods Cannot

Design-based research complements existing research meth-
ods in its ability to employ in a greater amount the tacit,
implicit, intuitive knowledge and skills of both designers

Design-Based Research 80

and users. Schon calls such knowledge knowing-in-action,
revealed only in the way in which we carry out tasks and
approach problems: “The knowing is in the action. It is
revealed by the skillful execution of the performance—we are
characteristically unable to make it verbally explicit” [8].

In other words, though we cannot explain such knowledge
and skills, we can demonstrate them by being engaged in a
particular activity. This observation is supported by studies
of embodied cognition, which emphasizes the formative role
that the environment plays in the development of cognitive
processes [9].

A design activity can set in motion our intuitive and tacit
knowledge accumulated through years of research and ex-
perience. Much of such valuable knowledge is not captured
in existing theories and guidelines. Often, we are not aware
that we possess it. Glass, for example, noted that actions of
designers are often implicit and intuitive, defining intuition as
“a function of our mind that allows it to access a rich fund of
historically gleaned information we are not necessarily aware
we possess, by a method we do not understand” [10].

Glass further elaborated that our unawareness of such knowl-
edge does not mean we cannot use it. Designers, for exam-
ple, often cannot explain their own creative processes, but,
through design, they can apply and materialize these creative
skills in solving a range of complex problems.

Our intuition and tacit skills also play an important role
in understanding and setting problems from messy and ill-
defined situations. By engaging in design, we can better
understand real-world, ill-defined, and wicked problems (as
discussed earlier). Similarly, through design we can better
understand users’ needs, as our users often cannot precisely

Design-Based Research 81

explain to us what they want unless we present them with
some version of a design solution [4]. Moreover, by engaging
users in design, we may employ their knowledge about their
domains, as well as their creativity.

While design itself adds discipline and professional attitude
to tacit, implicit, and intuitive knowledge and skills, design-
based research may be viewed as an attempt to increase
awareness of such knowledge and to support, capture, gen-
eralize, and share this knowledge beyond the design commu-
nity. Therefore, design-based research can be an especially
valuable method of inquiry in domains such as interaction
design, which does not have strong theories, models, and
laws to conduct extensive theoretical analyses, simulations, or
experiments, but does have practitioners and users who have
some (often tacit, implicit, intuitive) knowledge and skills
related to the domain.

Trustworthiness of Design-Based Research

While design-based research puts trust in designers’ skills,
ingenuity, and ability to correctly observe and generalize
issues observed in a design process, this trust should not be
blind. Results of research must be presented in a way that
enables readers to clearly understand the motivation and
reasoning behind particular claims. This means that designers
must provide sufficient information so that generalized claims
can be verified. Trustworthiness of design-based research
comes from making the reasoning behind generalized claims
explicit, public, and open to critical reflection and discussion.

Design-Based Research 82

Conclusion

The study of interactive systems requires the selection of
appropriate methods from a wide array for each research
question asked. For many of these questions, theoretical anal-
yses, controlled experiments, or ethnographical research are
the best methods. However, design-based research can pro-
duce knowledge that normally could not be generated by
theoretical analysis or traditional empirical approaches. It
can help us to better understand the problem and ask better
research questions, often having a pioneering role in settling
a new research territory that can then be “occupied” by other
research methods.

If lessons learned in design are to become accepted as seri-
ous scholarly endeavors within and outside our discipline,
we need to take responsibility for creating standards that
make such research recognizable and accessible to other
researchers. In particular, more work is necessary to create
a framework that can enable us to combine results of design-
based research with results from other forms of research. And
we as a community need to better understand the scope and
limitations of design-based research to be able to critically
review contributions of this kind.

Design-Based Research 83

References

10.

Brooks, F.P. Grasping reality through illusion-interac-
tive graphics serving science. Proc. CHI ‘88. ACM, New
York, 1988, 1-11.

. Zimmerman, J., Forlizzi, J., and Evenson, S. Research

through design as a method for interaction design re-
search in HCI. Proc. CHI ‘07. ACM, New York, 2007, 493—
502.

Edelson, D.C. Design research: What we learn when we
engage in design. Journal of the Learning Sciences 11, 1
(2002), 105-121.

Brooks, F.P. The Design of Design: Essays from a Com-
puter Scientist. Addison-Wesley Professional Boston,
MA, 2010.

Lawson, B. How Designers Think: The Design Process
Demystified, 4th Edition. Architectural press, Oxford,
UK, 2005.

. Simon, H.A. The Sciences of the Artificial, 3rd Edition.

MIT Press, Cambridge, MA,1996.

Henning, M. The rise and fall of CORBA. Comm. of the
ACM 51, 8 (Aug. 2008), 5257

Schon, D. The Reflective Practitioner. Basic Books, New
York, 1983.

. Dourish, P. Where the Action Is: The Foundations of

Embodied Interaction. MIT press, Cambridge, MA, 2001.
Glass, R.L. Software Creativity 2.0, developer” Books,
Atlanta, GA, 2006.

8. Doing Design-Based
Research in Practice

The previous chapter presents the general description of de-
sign-based research. This essay presents more practical advice
about how to do design-based research in practice.'

System/360 Model 91 Panel at the Goddard Space Flight Center (the
image was taken by NASA sometime in the late 60s). Fred Brooks
managed the development of IBM’s System/360 family of computers and
the OS/360 software support package. He later wrote about the lessons
learned in his seminal book The Mythical Man-Month.

"This chapter is based on the article Doing research in practice: some lessons
learned, XRDS 20, 4 (June 2014), 15-17.

https://doi.org/10.1145/2611810
https://doi.org/10.1145/2611810

Doing Design-Based Research in Practice 85

In the previous chapter I argued that, due to extensive tacit
and intuitive knowledge and skills, practitioners may be able
to acquire unique understandings. In this chapter I want to
argue that the knowledge you acquired through practice is
of limited value if your learning process is not disciplined.
Our experiences differ a lot, and our abilities to communicate
and understand it are also different. Practice-based research
is very limited if it is not accompanied with the following
features: prepared mind, systematic documentation, general-
ization, evaluation and iterations [1].

Prepared Mind. Louis Pasteur famously noted, “chance only
favors the mind which is prepared” Pasteur was speaking of
Danish physicist Oersted and the almost “accidental” way
in which he discovered the basic principles of electro-mag-
netism. He elaborated that it is not during accidental moments
that an actual discovery occurs: The scientist must be able,
with prepared mind, to interpret the accidental observation
and situate the new phenomena within the existing work.
Similarly, our learning in practice is limited without aware-
ness about the context and existing solutions. We may build
the wrong solution, or waste our time by “reinventing the
wheel,” instead of exploiting existing work, available, theories
and empirical results. Brooks similarly agued that practi-
tioners should know exemplars of their craft, their strengths
and weaknesses, concluding that originality is no excuse for
ignorance [2]. Furthermore, if we are not able to connect our
observations to a broader context and existing work we may
not be able to judge the relevance and importance of our
observations and we may miss the opportunity to make some
important discovery.

Systematic Documentation. To support research, your prac-
tical experiences should be documented. We keep forgetting

Doing Design-Based Research in Practice 86

things, and our memory changes over time. Keeping system-
atic documentation also enables retrospective analyses and
discovery of new findings even after our projects finish. It
is important to document all-important decisions, describing
the limitations and failings of the design, as well as the suc-
cesses, both in implementation and usage. Of particular value
is documenting the rationale for our decisions, describing
why we did something, not only what we have done. This
is not easy, as it often requires making explicit the elements
practitioners use intuitively. But such documentation is ex-
tremely valuable, especially for others, to understand why
some things worked well or not.

Sharing and Generalization. In a normal design effort the
primarily goal is to create a successful product, and lessons
learned are restricted to the particular design and the people
involved in it. To be useful to others, some effort has to be
invested in generalizing these lessons. Generalization enables
correlating different experiences, which otherwise may look
too specific.

Knowledge obtained from practice can be viewed as a gen-
eralization of experiences. In a normal design effort the
primarily goal is to create a successful product, and lessons
learned are restricted to the particular design and the people
involved in it. To be useful to others, some effort has to be
invested in generalizing these lessons.

Generalization enables correlating different experiences, which
otherwise may look too specific. In the process of gener-
alization, practitioners need to expand their focus beyond
the current design situation, viewing the design problem,
solutions, and processes as instances of more general classes.
For each of the collections of lessons learned as discussed in
the previous section, we may identify the corresponding type

Doing Design-Based Research in Practice 87

of generalizations (see the chapter Design-Based Research):
domain theories as generalizations of problem analysis, de-
sign frameworks or patterns as generalizations of design so-
lutions, and design methodologies as generalizations of design
procedures.

However it is also important not to “over-generalize” Practice
usually cannot provide us with insights to develop “grand”
and universal theories. Rather, emphasis should be between
narrow truths specific to some situation, and broader knowl-
edge covering several similar situations.

Evaluation. Evaluation is a necessary part of any learning
process. This is especially true for domains, such as software
engineering or human-computer interaction, where we have
to deal with complex human and social issues for which we do
not have strong theories, models and laws. By evaluation I do
not necessarily mean formal evaluation activities conducted
in “laboratories” (even thought these may be used sometimes).
I see evaluation as a systematic effort to get feedback on our
findings and quality of our work that is not based on our
intuition. Even simple techniques, such as peer reviews may
be incredibly efficient in identifying shortfalls in our problem
analysis, the solution, and the design procedure. In order to
enable such a process, practitioners need to be prepared to
make their reasoning explicit, public, and open to critical
reflection and discussion. The key is to make your intuitive
decisions more explicit and “vulnerable” to the critique of
others and empirical findings.

Iterations. Lastly, to maximize learning, all of the previous
elements should be applied in a number of iteration. While a
single event can have an impact, it usually takes many events
to extract general features and generate rules from experience.
In everyday work, you should try to combine elements of

Doing Design-Based Research in Practice 88

preparation, actual practical work, and evaluation (see Figure
1a).

At the begin of each learning cycle you should spend some
time preparing for you actions, reflecting on previous actions
and hypothesize about how you expect that your new actions
will affect outcomes. I call this phase a “thought experiment.”
In this phase, it is important to make explicit practitioners’
expectations and assumptions, so others can understand and
evaluate them. After actual practical work, there should be an
evaluation where outcomes of your actions are reviewed in
the light of their original assumptions. Results of evaluations
can further improve your understanding, and serve as a basis
for new cycles. Ideally, this process should also include a
preparatory research, where practitioners collect as much
information about existing work as possible at the beginning,
and make their goals explicit and clear. This model may be too
idealistic for practical work. However, I find this model a very
useful guide to structure and add some discipline to everyday
work, and in that way maximize learning from practice and
obtain knowledge that may be interesting for the research
community.

Learning should not stop at the end of a project. New in-
sights and broader generalizations will often occur through
retrospective analyses of lessons learned and data collected
through a whole project. Brooks, for example, spent several
years analyzing and reflecting on the lessons learned in de-
sign of 0S/360, producing the influential The Mythical Man-
Month [3]. These macro-iterations of retrospective analyses
can also happen on a broader scale, covering several projects
from different contributors. For example, in special issues
of journals, editors often spend some time summarizing and
generalizing findings from individual articles.

Doing Design-Based Research in Practice 89

(a) mini iterations of practical work, evaluation / critique and thought experiments

\

systematic documentation, initial generalizations >

Preparation $
thought thought thought thought
exp. exp. exp. exp.

luation / ion / luation /

critique critique critique
practical practical practical
experience experience experience

| Practical work on development of a software intensive system >

(b) macro-iterations of practice-base research including retrospective analyses

Emerging knowledge

!

Long-term macrocycle (months, years)

!

Long-term macrocycle (monts, years)

Preparation Preparation

Daily/weekly minicycles Daily/weekly minicycles

Figure 1: A simple model of iterations in practice-based research. We can
view a practice-based research process as composed of mini-iterations of
preparations, practical work, and evaluations, occurring continuously
through the project (a), embedded in long-term macro-iterations that
include research preparation and retrospective analyses and reflections
(b), covering the period of one or more projects. Macro-iterations can
itself be connected so that results of one research project guide prepara-
tions of another research project.

Doing Design-Based Research in Practice 90

References

1. Edelson, D.C. Design research: What we learn when we
engage in design. Journal of the Learning Sciences 11, 1
(2002), 1052€121.

2. Brooks, F.P. The Design of Design: Essays from a Com-
puter Scientist. Addison-Wesley Professional, 2010.

3. Brooks, F.P. The Mythical Man-Month. Addison-Wesley
Professional, 1995.

9. Design As a Political
Activity

The following essay does not directly discuss the research in
practice. However, it addresses one factor that will inevitably
affect any research and design activates in practice - politics.
Everything that you do in practice will have an immediate
impact on people and their behavior, and lead to a number
of complex political situations. I wrote this essay as a reaction
to the fact that, while there are many articles about politics in
design, none of them define the meaning of the term ‘politics’!

[T i

Victoria Woodhull a first female candidate for U.S. president addressing
congress in 1872.

"This chapter is based on the article Design as a political activity: borrowing from
classical political theories, interactions 22, 6 (October 2015), 42-45.

https://doi.org/10.1145/2832903
https://doi.org/10.1145/2832903

Design As a Political Activity 92

Introduction

Several design scholars have suggested that design is a politi-
cal activity. Jonas Lowgren and Erik Stolterman, for instance,
claimed that all designs are manifestations of political and
ideological ideas because design outcomes influence our lives
[1]. Bjorn Franke argued that a design is a political decision
about how people should live, communicate, or behave (see
www.designaspolitics.com). Franke also maintained that we
could view politics as a form of design because it involves
planning, making decisions, and creating laws. And Michael
Bierut argued in similar terms about graphic design: “Much,
if not most, graphic design is about communicating messages,
and many of these messages are intended to persuade. This
places its practice clearly in the realm of politics” [2].

Discussions about the political aspects of design are not
new; however, most of these discussions have been vague.
Calling design a political activity because it influences the
lives of people does not say much—almost everything we do
directly or indirectly influences others. And calling politics a
form of design does not help clarify the distinctions between
these two terms. With such broad and vague discussions, we
risk inflating the already loaded terms design and politics,
making constructive discussions about them difficult, if not
impossible.

With this article I want to support ongoing discussions about
the political aspects of design by exploring the meaning of
the word politics more deeply. I base my exploration on
James Alexander’s recent analysis of definitions of politics in
five classical political theories [3]. I will argue that classical
political theories provide strong, concrete support for claims
that design is a political activity. Moreover, looking at design

Design As a Political Activity 93

through the lenses of classical political theories reveals inter-
esting and complex sets of political situations.

Classical Political Theories

Politics is a widely used and loaded term. Alexander found
that many influential political theories contradict one another
in their definitions of politics [3]. He noted, however, that
these theories do have several common characteristics and
that each theory sheds a different light on the meaning of
the word. Here, I review these common characteristics and
briefly present five classical political theories that Alexander
attempted to generalize.

A central theme in definitions of politics is a rule, a common
standard that regulates some aspect of human lives. Politics is
normally defined as an activity through which people make,
preserve, and change the general rules under which they live

(3].

Political theorists do not view politics as being identical to
rules or as a simple execution of the rules. Rather, politics is
an activity related to the introduction or changes of rules in
situations where there is a division of people in two classes:

« the rulers, a group of people who have (formal or infor-
mal) powers to define the rules that other people need
to follow, and

« the ruled, a group of people who are (formally or infor-
mally) following the rules defined by rulers.

Political theorists generally agree that in politics the ruled
are not simply passive followers of rules; the ruled have the
opportunity to influence, actively change, or disrupt the rules.

Design As a Political Activity 94

Robin George Collingwood defined politics as the science of
“rightness or conformity to rule” [4]. According to Colling-
wood, political action is “the making and obeying the laws
. regulation, control, the imposition of order and regular-
ity upon things” [4]. Through politics, rulers and ruled are
attempting to meet shared standards so that order can be
achieved. For Collingwood, politics is related to any activity
associated with rules (the view that I share in this article):

The rules of any corporation, the statutes of a company, the
regulations of a club, the routine of a family, are all political
facts, and no less political are the rules which a man makes
for his own guidance, and revises [them] from time to time as
occasion demands [4].

To be political, Collingwood stated, an activity has to satisfy
three “laws of politics” [5]:

« People involved in an activity are divided into a ruling
class and a ruled class.

« The barrier between the two classes is permeable in an
upward sense (i.e., the ruled can become the rulers).

« There is a correspondence between the rulers and ruled.

Michael Oakeshott argued that politics happens when persons
without authority (i.e., the ruled) can approve or disapprove
of rules, or offer their opinions about the need to change
or not change these rules [6]. In Oakeshott’s view, in a
political activity the ruled respond to attempts by the rulers
to lay down common standards. The rulers propose common
standards, and the ruled can express judgments about how
these standards affect their interests.

Hannah Arendt viewed persuasion as one of the most impor-
tant elements of politics. To be political, says Arendt, means

Design As a Political Activity 95

that everything is decided “through words and persuasion and
not through force and violence” [7]. In political situations,
“men in their freedom can interact with one another ... as
equals among equals ... managing all their affairs by speaking
with and persuading one another” [8]. In Arendt’s view, to
command (i.e., to rule) rather than to persuade involves pre-
political ways of dealing with people, characteristic of life
outside the political system.

Carl Schmitt maintained that a central element of a political
activity is a decision [9]. Simply talking about rules does not
make an activity political. An activity may be called political
only to the extent that it crystallizes in a decision. According
to Schmitt, in any political activity the rulers and ruled face
the political imperative that a decision be made. How this
decision is made is not a defining characteristic. Rather, what
makes some activity political is the mere imperative that a
decision is made. Schmitt also views politics in more negative
terms, as nothing more than party politics, where people take
sides to reach desired decisions.

Last, Jacques Ranciére sees politics as a revolt against the
ruling according to established rules [10]. In his view, ruling
is the activity of police, while politics is anything that disrupts
this activity. Ranciére defines police order as a set of implicit
rules and conventions that determine the distribution of roles
in a community. A police order defines rules and imposes
constraints on what can be thought, made, or done in a
particular context. Politics, in Ranciére’s view, is an activity
that challenges such police order and its rules.

Here, I only briefly sketched definitions of politics from clas-
sical political theories. For readers who want to explore this
topic further, I recommend reading the work of the political
theorists mentioned. I also recommend James Alexander’s

Design As a Political Activity 96

article for a nice overview [3].

Design as a Political Activity

Classical political theories provide strong, concrete support
for claims that design is a political activity. Politics revolves
around the process of defining rules and common standards
that regulate human activities, and design is always about
defining some such rules and common standards. Léwgren
and Stolterman, for example, claimed that every design con-
strains our space of possible actions by promoting the usage of
certain skills and focusing on the creation of certain outcomes
[1]. Similar to the Ranciére’s view on the police order, each
design imposes constraints on what can be thought, made, or
done in a certain context.

What political theories add to current discussions about de-
sign and politics is the view that the mere existence of rules
does make some activity political. Politics “happens” when
rules can be introduced or changed based on the interaction
between the rulers and the ruled. Consequently, we may say
that design is a political activity because (and only when)
design stakeholders can influence introduction and changes
of design-related rules. Design professionals who do not
allow others to influence such rules risk being perceived as
dictators, as discussed in Alex Cabal’s blog post “The Cult
Of Design Dictatorship” (https://alexcabal.com/the-cult-of-
design-dictatorship/).

Looking at design through the lenses of classical political
theories reveals an interesting and complex set of political
situations. One group of these situations is the interaction
between design professionals and users. Different approaches

Design As a Political Activity 97

to design promote different balances of power between de-
sign professionals and users. In user-centered design (UCD),
for example, design professionals try to optimize a product
around how users can, want, or need to use the product.
Here, design professionals have most of the decision-making
power, but users (or their representatives) are encouraged
to provide feedback. Users can express their opinions and
comments on proposed or implemented rules (e.g., through
participatory design sessions, prototype and usability testing,
or satisfactory surveys). In political terms, the rulers (de-
sign professionals) and the ruled (users) are attempting to
agree on shared standards so that order can be achieved (as
Collingwood suggests). Alternatively, we may view UCD as
a political situation in which the rulers (design professionals)
are attempting to define common standards and the ruled
(users) respond to these attempts by making judgments about
how these standards affect them (as Oakeshott suggests).

Co-design and participatory design promote more equal re-
lations between design professionals and users (e.g., [11]).
In these approaches, the goal of design professionals is not
to make final design decisions. Rather, these approaches are
empowering, encouraging, and guiding users to make these
decisions for themselves. In political terms, these initiatives
attempt to blur the distinction between the rulers and the
ruled, making them “equals among equals,” as Arendt sug-
gests.

We may also talk about “mass politics” as a form of interaction
between design professionals and users. Various consumer
product “revolutions” may be viewed as such. Users have
often rejected existing products and begun using new ones
perceived as better or more desirable (e.g., gesture-based
vs. keyboard-based smartphones). Here, individual users do

Design As a Political Activity 98

not have a direct influence on design decisions. However,
they can accept or reject competing products through their
free choice in the market. In that way, they can indirectly
stimulate companies to react and change their designs. In
political terms, these situations may be viewed as revolts
against established rules (as Ranciére suggests). Such “mass
politics” can also force other changes in design companies. In
2014, for example, a number of users boycotted the Firefox
Web browser because of the CEO’s stance on gay rights. This
boycott significantly contributed to the pressure that led to
the CEO’s resignation.

Another set of political situations in design relates to the
rules that regulate a design process. Design professionals and
other stakeholders need to agree on a number of rules that
coordinate their work. Defining a design process, deciding
on a budget, setting priorities, negotiating deadlines, and
selecting tools and materials are complex political activities
with many stakeholders. Interactions between design pro-
fessionals and clients are one example. On the one hand,
clients define the terms and conditions of contracts and are
responsible for providing financial and other support. On the
other hand, clients depend on the expertise and ideas of design
professionals. Design professionals are not mere executors of
the client’s wishes, and they are expected to be innovative.
But to get their ideas accepted, design professionals need to
interact with clients and persuade them of the rightness of
particular design choices. This aspect is nicely illustrated in
an anecdote provided by Herbert Simon. Simon had asked
Ludwig Mies van der Rohe how he got a client to sign off on a
house that was radical for 1930. Mies apparently replied, “He
wasn’t happy at first. But then we smoked some good cigars ...
and we drank some glasses of a good Rhine wine ... and then

Design As a Political Activity 99

he began to like it very much”

This anecdote may be described as a political situation viewed
in Arendt’s terms. Decisions are reached “through words and
persuasion,” and people manage their affairs “by speaking
with and persuading one another”

In some cases, complex political interaction among design
stakeholders may lead to negative consequences and “party
politics” A typical example is “design by committee” Fred
Brooks argued that outcomes of a design by committee lack
focus and result in impractical products with too broad func-
tionality. Brooks elaborated that the people in committees,
in order to protect their own interests, are often reluctant to
reject any request:

Each player has a wish list garnered from his constituents
and weighted by his personal experiences. Each has both an
ego and a reputation that depend on how well he gets his list
adopted. Logrolling is endemic—an inevitable consequence of
the incentive structure. “I won’t naysay your wish, if you won’t
naysay mine” [12].

The need of design professionals and other stakeholders to
make decisions within limited timeframes further emphasizes
the political aspect of design. All projects have deadlines.
Design professionals often need to make a number of agree-
ments and compromises to meet these deadlines. Even when
a strict deadline is not imposed, the dynamics of the design
process may put pressure on design professionals to make
decisions quickly. Bryan Lawson, for example, noted that pro-
crastination as a strategy in design is deeply flawed [13]. He
elaborated that once a design problem has been identified, it
is no longer possible to avoid making decisions about a design
outcome: “In many real-life design situations it is actually

Design As a Political Activity 100

not possible to take no action. The very process of avoiding or
delaying a decision has an effect!” [13]. For example, if a new
road is planned but the route remains under debate for any
lengthy period, the property in the region will likely change
in value. Here we have a typical Schmitt’s situation where the
rulers and ruled face the political imperative that a decision
be made.

Conclusion

Examples in the previous section are just some of the possible
political situations in design. Design professionals may also
be involved in other political situations, including:

« politics surrounding public policies, as illustrated by the
long-running Interactions forum of the same name,

« workplace politics of organizations in which design
professionals operate,

« politics of design educational institutions and funding
agencies, and

« politics of professional organizations (such as ACM).

And the list could be extended even more. My goal is not
to provide an elaborate rundown of all possible political
situations in design. Rather, I want to illustrate that the space
of political situations in design is broad and diverse.

Consequently, we need to be thoughtful about the political
aspects of design. Politics is an unavoidable and essential part
of design. With this article I wanted to show that studying
classical political theories can provide insights about why
design is a political activity. I hope to encourage design
professionals, researchers, and students to explore this topic
in more depth by themselves.

Design As a Political Activity 101

References

1. Lowgren, J. and Stolterman, E. Thoughtful Interaction
Design: A Design Perspective on Information Technol-
ogy. The MIT Press, 2004.

2. Roberts, L. and Baldwin, J. Visual Communication: From
Theory to Practice. Fairchild Books AVA, 2006.

3. Alexander, J. Notes towards a definition of politics.
Philosophy 89, 348 (2014), 273-300.

4. Collingwood, R.G. Essays in the Political Philosophy
of R.G. Collingwood. D. Boucher, ed. Clarendon Press,
Oxford, 1989.

5. Collingwood, R.G. The New Leviathan. Oxford Univ.
Press, 1942.

6. Oakeshott, M. On Human Conduct. Oxford Univ. Press,
1975.

7. Arendt, H. The Human Condition (2nd Edition). Chicago
Univ. Press, 1998.

8. Arendt, H. The Promise of Politics (Reprint Edition).
Schocken, 2007.

9. Schmitt, C. The Concept of the Political. Univ. of Chicago-
Press, 1996.

10. Ranciére, J. Dissensus: On Politics and Aesthetics. A&C
Black, 2010.

11. Sanders, L. and Stappers, P.J. From designing to co-
designing to collective dreaming: Three slices in time.
Interactions 21, 6 (2014), 24—33.

12. Brooks, F.P. The Design of Design. Addison-Wesley
Professional, 2010.

13. Lawson, B. How Designers Think (Fourth Edition). Ar-
chitectural Press, 2005.

ITI NEW IDEAS

10. Experiential Learning
of Computing
Concepts

Doing research in practice is based on learning from expe-
rience. Consequently, the experiential-learning domain can
provide us with useful insights about how to effectively learn
from experience. In this essay, I explore the experiential learn-
ing theory, and present some of lessons learned in applying
experiential-learning paradigm in education.!

- e —

Shimer College students learning to cook by cooking, 1942.

"This chapter is based on the article Rethinking HCI education: teaching interactive
computing concepts based on the experiential learning paradigm, interactions 19, 3 (May
2012), 66-70.

https://doi.org/10.1145/2168931.2168945
https://doi.org/10.1145/2168931.2168945

Experiential Learning of Computing Concepts 104

Introduction

Interactive computing technologies such as sensors, actuators,
and interactive graphical displays have become increasingly
common in cars, household equipment, and other consumer
products. As such, industrial and product design profession-
als, traditionally concerned with the physical form and mate-
rial properties of products, must now take into account issues
related to these interactive technologies. These designers need
to understand the possibilities and limitations of computing
technologies at a sufficient level to be able to engage in a
constructive discussion with computing professionals and to
be able to create feasible concept proposals for products that
use this technology.

Many design schools have begun to introduce courses on
computation to prepare students for these new challenges.
These approaches are usually based on adapting and simpli-
fying courses developed in computer science schools, such as
teaching students the basics of programming, or introducing
the general principles of a particular computing technology.
With current tools, however, students generally cannot de-
velop a sufficiently good understanding of the capabilities
of computing technologies unless they, themselves, are very
skilled programmers or developers. In practice many stu-
dents do not succeed in mastering the syntax of program-
ming. Computing concepts are often introduced with activ-
ities (such as generating lists of prime numbers and making
simple line drawings) that are not connected to students’
interests or experiences. Additionally, such approaches do
not recognize that two radically different education models
need to be bridged. Design and craft schools generally follow
the experiential learning paradigm, in which knowledge is

Experiential Learning of Computing Concepts 105

acquired mainly through doing and working on practical
projects [1]. Computer science education, on the other hand,
has its roots in mathematics, often emphasizing formal meth-
ods and models, articulation of general principles, and a top-
down approach to problem solving.

Web camera captures
images for motion detector

S e RTAARAR

The “window” becomes clear as a
user tries to makes it clean

Figure 1. In this example a transparency of a window changes in
response to the estimated intensity of hand motion. A motion detector is
used to control the transparency of the image representing the window.

Here we discuss our experiences applying a new educational
framework for teaching advanced computing concepts com-
patible with the practice-oriented educational models used in
design and craft schools. Figure 1 provides an illustration of
our approach. This example shows an exploration of an “in-
telligent window” concept, where the visibility of the window
is changed by “cleaning” it with a hand gesture. Through this
example, we want to illustrate several innovations we have
started to introduce in the education of interaction designers:

Experiential Learning of Computing Concepts 106

« The student explores a simplified version of a com-
plex computing component, in this case a camera-based
motion detector, directly experiencing its possibilities
and limitations without needing to know its technical
details.

« The exploration and understanding of technology hap-
pens in action, in the context that is meaningful for
students, directly related to the problem they are dealing
with (the “intelligent window” concept), and connected
with familiar tools, such as sketching tools and graphical
editors.

« The exploration is more holistic, enabling the student to
reflect on the relations among user issues, technological
possibilities, and overall dynamics of the interaction.

Even without providing detailed understanding, such experi-
ences can pinpoint the limitations of a technology, such as
the need for a clear visual field between the sensor and a
user’s hands, the influence of lighting on the performance of
the sensor, the delay caused by the processing of data, and
some indirect consequences, such as the user fatigue when
the interaction is prolonged. In early phases, this can lead the
student to create solutions that overcome these limitations,
such as clever positioning of the sensors, adding lighting
elements, and making the interaction sessions short enough to
avoid user fatigue. In our educational framework, this direct
experience of exploring computing technologies is a starting
point of the learning process, enabling students to come up
with an understanding of computation by reflecting on their
experiences.

Experiential Learning of Computing Concepts 107

Background

Experiential learning is a guided process of questioning, in-
vestigating, reflecting, and conceptualizing based on direct
experiences. In this learning process, the learner is actively
engaged, has freedom to choose, and directly experiences the
consequences of their actions. There are several models of the
experiential learning process, including Kolb’s cyclical learn-
ing process [2], Schon’s reflective practice model [1], Joplin’s
action-reflection cycle [3], Kesselheim’s learning process [4],
and Dewey’s three-stage process of learning [5]. Though there
are differences among these models, the nature of experiential
learning is fairly well understood and agreed upon, and all
experiential learning models share the following elements [6]:

« actions that create an experience,

« reflections on the action and experience,

« abstractions drawn from the reflections, and

« application of abstractions to a new experience.

Particularly relevant for our work is the experiential learning
model developed by Donald Schén. It is one of the most
influential and widely accepted models in design- and prac-
tice-oriented schools [1]. This model, sometimes also called
“reflective practice,” stresses the dynamic, cyclic, and reflec-
tive nature of design, in which practitioners approach the
solution in cycles. In each cycle they interactively frame the
problem, generate moves toward a solution, and reflect on the
outcomes of these moves.

The Framework

We have begun to develop a framework for teaching ad-
vanced computing concepts based on the experiential learn-

Experiential Learning of Computing Concepts 108

ing paradigm. With our framework we wanted to enable
industrial design students to experience the design of sys-
tems that employ advanced computing technologies, such as
speech- and camera-based sensors, or Web services, and to
learn from that experience. More specifically, we had the
following goals:

» To empower students to explore computing technologies
without intensive programming. Most of our students
are not programmers, and creating systems that em-
ploy advanced computing technology using conven-
tional programming languages is beyond their reach.

« To increase students’ awareness of the possibilities, lim-
itations, and complexity of computing systems. Many of
our students are not aware of the availability and oppor-
tunities of emerging computing technologies, and they
often have unrealistic expectations about technologies
and their complexity.

Having in mind these goals and the discussion about the
previous work, we adopted several guiding principles for
development of our framework: * We follow the general
philosophy behind experiential-based learning: When what
we experience differs from the expected or intended, dise-
quilibrium results and our adaptive (learning) process is trig-
gered. Reflection on successful adaptive operations (reflective
abstracting) leads to new or modified concepts. The challenge
is to create learning environments that are complex enough
to lead to unexpected experiences, but not too complex to
be inaccessible to students. * Unguided or minimally guided
experience and reflection is not effective [7]. We must provide
a structure and a set of plans that support the development of
informed exploration and reflective inquiry without taking

Experiential Learning of Computing Concepts 109

initiative or control away from students. We need to create a
personally meaningful context for students. For a problem to
foster the learning of powerful computing ideas, the students
must accept it as their problem. We need to take noncontex-
tualized computing ideas and embed them in a meaningful
context for student investigation.

Software Tools Creating Context

Sketchify Simplified animation and Empowering existing
visual programming contexts

Simplified
software/hardware New spaces — a studio
components and services based paradigm

Framework for teaching
advanced computational

concepts based on experiential
learning paradigm

creating experience T

guiding experience l

Themes and
Experience Constraints

Tools
for Reflection

Reflection Support Constraining Experience

Figure 2. The framework for experiential learning of computing con-
cepts, consisting of tools that facilitate creation of useful experiences
and tools that guide and support reflection on such experiences.

Our framework supports these principles with a collection of
software tools, conceptual frameworks, and guidelines, which
we classify into two groups (Figure 2):

« tools that facilitate the creation of useful experiences for
exploring advanced computing technology, and

« tools that guide and support reflection on such experi-
ences.

Experiential Learning of Computing Concepts 110

Creating experience. The key element of our approach is
empowering students to have relevant experiences with ad-
vanced computational technologies, because without such
experiences, the students do not have a basis to reflect and
learn. To support this goal, our framework includes:

« a collection of software tools to empower students to
explore the limitations and opportunities of technologies
without intensive programming, and

« tools and spaces for creating the contexts for such expe-
riences.

Existing approaches to teaching computing concepts do not
usually allow exploration of advanced computing technolo-
gies unless a student is willing to become a skilled program-
mer and learn a significant amount of technological detail.
Our goal was to facilitate creating learning experiences, as
described in our introductory example, without requiring stu-
dents to program or to obtain detailed technical knowledge.

The main software tool for our educational activities was
the Sketchify toolkit (http://sketchify.sf.net). This software
toolkit helps non-programmers build systems with complex
computing technologies; it served as the basis for supporting
the experiential learning in our courses. In this way, we
could bring components from various domains within stu-
dents’ reach, allowing them to directly experience possibili-
ties and limitations of technologies without needing advanced
programming skills. Sketchify enables students to combine
these technology samples with drawing tools and simple
end-user programming techniques, such as spreadsheets. We
have incorporated many samples of computing technologies
within Sketchify, including text-to-speech engines and speech

Experiential Learning of Computing Concepts 111

recognizers, Web services (such as the Google search engine),
Phidgets, Arduino, semantic services (such as the Wordnet
definition service), camera-based face and motion detectors,
MP3 and MIDI players, Wii Remote, a Car Simulator, and
many others. (A detailed description of the tool is available

in [8]).

In addition to using and developing software tools that can
enable students of diverse backgrounds to explore advanced
computing technology, we have been working on creating
contexts for such experiences. Sketchify focuses on enabling
students to exploit the computing technologies available in
their environment by allowing them to use everyday comput-
ing objects and artifacts, such as their mobile phones, game
devices, cameras, or microphones. We developed a number of
Sketchify adapters for these objects.

We are also working on creating spaces with specialized
equipment and a more stimulating atmosphere. One such
space is the ConceptLab, a studio that reflects our vision of
what a design studio of the future could look like.

Guiding experience. With the tools described earlier, we can
empower students to engage in useful learning experiences.
In reference to our second general principle, which states
that unguided experience is not effective, we also developed
several conceptual tools that can help educators guide and
structure students’ experience and reflection.

In all of our educational activities, we asked students to keep
a creative logbook in which to write down what they had
learned and to reflect on the techniques they were using. We
also encouraged public discussions, not as mere presentation
activities, but as an opportunity to reflect on the experience
and learn something new.

Experiential Learning of Computing Concepts 112

Device Environmental User
constraint constraint constraint
Computer (small screen size) (loud noise) (color blindness) Human

= ’—‘
Modality Visual
(image) perception

Modality Speech
(speech) perception

Modality
(vibration)

Haptic
perception

b b b

Figure 3. An example of reflection about interaction through interaction
constraints. Presenting information through image modality is limited
by screen size and users’ color disability. Speech may not be perceived in
very noisy environments. Using vibrations, such as on a mobile phone,
is not affected by the device screen size, environmental noise, or user
color blindness, although it has limited information bandwidth.

To help guide students reflect on discussions, presentations,
and notes, we provided several structured frameworks. The
main purpose of these frameworks is to give students a
structure to reflect on their experiences and to provide them
with a shared vocabulary they can use to critically review
each other’s work. A systematic analysis and reflection on
concrete systems can reveal potential problems and inspire
new features. Frameworks for reflection also provide a way
to introduce and give meaning to computing concepts. For ex-
ample, in courses related to the design of interactive systems,
we used an adaptation of the framework for modeling human-
computer interaction in terms of interaction constraints [9].
This model is presented in Figure 3. The idea behind this
modeling framework is that an interactive system could be
described in terms of requirements that it imposes on users,
such as usage of the visual field or audio perception. This
description is discussed in terms of potential constraints that

Experiential Learning of Computing Concepts 113

may influence the interaction, such as device limitations, user
(dis)abilities, and the environmental influence.

Another important component of our framework is experi-
ence constraints. While we stimulate students to work on
their own problems and set their own goals, when working
in groups we found it useful to give a direction to students’
activities. Rather than setting a concrete goal, experience
constraints are aimed at giving the “mood” to the whole
educational setting and activities. Experience constraints thus
serve two roles (Figure 4):

« constrain student explorations, providing inspiration,
giving direction, and focusing students’ activities; and

« provide a unified theme for student actions and projects,
in order to facilitate communication among students.

teachers’ initiative

provide a common theme
for a group of students

PP P

guiding and constraining individual student work students’ initiative

Figure 4. The role of experience constraints in our framework.

Existing approaches to teaching computing concepts do not
usually allow exploration of advanced computing technolo-
gies unless a student is willing to become a skilled program-
mer and learn a significant amount of technological detail.

We used various themes and metaphors to provide experience
constraints. For example, in our master’s course on multi-
modal interaction we used the “Power Trio” theme to inspire

Experiential Learning of Computing Concepts 114

and unify students’ activities. In our undergraduate course
“Sketching Interactive Systems” we used the theme of sketch-
ing to encourage them to explore more diverse technologies.

Our experience constraints have a role similar to that of a
primary generator in design used to “narrow down the space
of possible solutions by providing an initial focus, i.e., by
constraining and guiding the designer’s development of a
solution” [10].

Conclusion

Our framework has been developed and applied during a
period of three years at the Department of Industrial Design at
the Eindhoven University of Technology. We used it in three
iterations of the undergraduate course “Sketching Interactive
Systems” and three iterations of the postgraduate course
“Multimodal Interaction.” The first results are encouraging,
and although it’s still too early to make more specific claims,
our initial findings suggest the following:

The key element of our approach was to empower students
to have relevant experiences with advanced computational
technologies. Without such experience, the students do not
have a basis to reflect and learn. This was a particularly
successful element in the usage of our framework, especially
in undergraduate education.

Our tools enabled students to discover and learn a range of
important properties of current computing technologies, as
well as some basic computing abstractions, such as variables.
Though such experience has its limits and cannot enable
students to discover all relevant concepts, it provides a pro-
ductive context to discuss such concepts and increases the
general interest of students.

Experiential Learning of Computing Concepts 115

Providing a structure and a set of plans that support informed
exploration and reflective inquiry was crucial to enabling
students to learn from their experience and from each other.
Simply letting students explore computing technology and
build computational systems will not necessarily help them
learn computing concepts.

Having themes and constraining students’ experiences had a
positive effect on the conceptual integrity of our educational
activities and on student collaboration. However, the theme
has to be introduced carefully and clearly to avoid confusion
among students about its role.

Experiential Learning of Computing Concepts 116

References

10.

. Schon, D.A. The Reflective Practitioner. Basic Books,

New York, 1983.

. Kolb, D.A. Experiential Learning: Experience as the

Source of Learning and Development. Prentice Hall,
New Jersey, 1984.

. Joplin, L. On defining experiential education. Journal of

Experiential Education 4, 1 (1981), 17-20.

. Kesselheim, A.D. A rationale for outdoor activity as

experiential education: The reason for freezing. Proc.
1st North American Conference on Outdoor Pursuits in
Higher Education (Boone, NC). 1974, 18-22.

. Dewey, J. Experience and Education. Simon and Schus-

ter, New York, 1938/1997.

. Stehno, J.J. The application and integration of expe-

riential education in higher education. Touch of Na-
ture Environmental Center, Southern Illinois University,
Carbondale, IL, 1986; (Eric Doc. Reproduction Service
No ED-285-465).

. Kirschner, P.A., Sweller, J., and Clark, R.E. Why minimal

guidance during instruction does not work: An analy-
sis of the failure of constructivist, discovery, problem-
based, experiential, and inquiry-based teaching. Educa-
tional Psychologist 41, 2 (2006), 75—-86.

. Obrenovic, Z. and Martens, J.B. Sketching interactive

systems with Sketchify, ACM Transactions on Computer
Human Interaction 18, 1 (March 2011), Article 4.

. Obrenovic, Z., Starcevic, D. and Abascal, J. Universal

accessibility as a multimodal design issue. Commun.
ACM 50, 5 (May 2007), 83—88.

Lawson, B. How Designers Think: The Design Process
Demystified (4th ed.). Architectural Press, 2005.

11. Sketchifying:
Bringing Innovation
into Software
Development

Doing research in practice also requires intensive experimen-
tation. Software Sketchifying is an idea about how to bring
a research mindset and more experimentation in software
development.!

Mr. and Mrs. Henry Ford in his first car, the Ford Quadricycle.

"This chapter is based on the article Software Sketchifying: Bringing Innovation
into Software Development, IEEE Software 30, 3 (May-June 2013), 80-86.

https://doi.org/10.1109/MS.2012.71
https://doi.org/10.1109/MS.2012.71

Sketchifying: Bringing Innovation into Software Development 118

Introduction

Henry Ford’s assembly-line production of the Model T in-
spired changes in the automotive industry, and the software
industry has made numerous attempts to apply similar ideas
(for example, see the chapter, “Will the Real Henry Ford of
Software Please Stand Up” in Robert L. Glass’s book) [1].
While the assembly-line philosophy is well known, Ford’s ap-
proach to innovation and the process that preceded the Model
T’s production is less so. Between 1892 and the formation of
the Ford Motor Company in 1903, while working mostly for
the Edison Illuminating Company, Ford built about 25 cars.
In the five years after the company’s formation, he built and
sold eight models—Models A, B, C, F, K, N, R, and S— before
settling on the Model T. He tested prototypes labeled with the
11 missing letters. Ford summed up this experience this way

[2]:

I do not believe in starting to make until I have discovered
the best possible thing. This, of course, does not mean that a
product should never be changed, but I think that it will be
found more economical in the end not even to try to produce
an article until you have fully satisfied yourself that utility,
design, and material are the best. If your researches do not
give you that confidence, then keep right on searching until
you find confidence.... I spent twelve years before I had a Model
T that suited me. We did not attempt to go into real production
until we had a real product.

Today’s automotive industry has changed significantly since
Ford’s initial success, but some of his philosophy behind
innovation still remains. For example, Toyota’s “nemawashi”
principle states that decisions should be implemented rapidly
but made slowly, by consensus, and after considering all

Sketchifying: Bringing Innovation into Software Development 119

options[3]. Bill Buxton, who studied innovation in the auto-
motive industry, noted that a new car’s design phase starts
with a broad exploration that culminates in the construction
of a full-size clay model and costs over a quarter of a million
dollars[4]. Only after bringing the new concept to a high level
of fidelity in terms of its form, business plan, and engineering
plan does a project get a “green light.” After that, it typically
takes a year of engineering before the project can go into
production.

Inspired by general ideas about how the automotive in-
dustry brings innovation into manufacturing, I developed
software sketchifying as an activity to stimulate and support
software stakeholders to spend more time generating and
considering alternative ideas before making a decision to
proceed with engineering. My view on software sketchify-
ing combines general ideas of sketching[4] and creativity
support tools[5] with several existing software engineering
approaches. To support and explore this view, I developed
Sketchlet (http://sketchlet.sourceforge.net), a flexible, Java-
based tool that empowers engineers and nonengineers to
work with emerging software and hardware technologies, ex-
plore their possibilities, and create working examples—called
sketchlets—that incorporate these emerging technologies.

Product Innovation and Software
Engineering

Contrary to the automotive industry, the software industry
has a rich history of engineering wrong products. Ill-defined
system requirements and poor communication with users
remain top factors that influence software project failures[6].
Frederick Brooks also noted that the hardest single part of

Sketchifying: Bringing Innovation into Software Development 120

building a software system is deciding precisely what to
build[7]. He proposed rapid system prototyping and iterative
requirements specification as a way to solve this problem.
Many existing software engineering methodologies, includ-
ing the Rational Unified Process, Extreme Programming, and
other agile software development frameworks follow iterative
and incremental approaches.

However, these approaches have limitations when it comes
to true innovation. Although prototyping can let us cheaply
represent and test our ideas, and iterative and incremental
development can help further refine our ideas based on fre-
quent user feedback, neither approach directly supports the
generation of new product ideas, nor do they encourage the
consideration of alternatives.

Buxton went further in his critique of the innovation capacity
of iterative, incremental software development, seeing no
comparison between software product design and the de-
velopment of new automobiles[4]. He argued that innova-
tive software projects need at least a distinct design phase
followed by a clear green-light process before proceeding
to product engineering. He saw design and engineering as
different activities that employ different processes and for
which people suited to one are typically not suited for the
other.

A Sketchifying Scenario

Consider an example scenario with Mirko, an interaction
designer at a company that builds software for new
generations of cars with advanced sensing and display
technologies. Mirko has recently joined the company to
explore ideas for software applications that exploit novel

Sketchifying: Bringing Innovation into Software Development

opportunities, such as using data from a car radar, GPS
sensors, and links to Web services.

Mirko’s first task is to explore two applications: a system
for warning about the proximity of other cars and a
system for presenting news in idle situations, such as
waiting for a traffic light. Mirko isn’t a programmer, nor
is he familiar with all the technical possibilities of modern
cars, but he uses a design environment through which he
can access and explore software services and components
related to his task without serious programming.

To understand what’s possible, Mirko first talks with sev-
eral of his company’s engineers. They advise him to start
by using a car simulator, which provides a realistic but
safe environment to learn about new automotive tech-
nologies. One engineer also writes a small adapter that
connects the car simulator logger to Mirko’s design tool.
This adaptation gives Mirko immediate access through a
simple spreadsheet-like interface to the simulator data—
such as the car’s speed and its distance from the car
in front of it. Mirko starts a design environment on his
laptop and connects it to the simulator. After becoming
familiar with the simulator’s possibilities, he turns to
his laptop to create a few sketchlets, which are simple
interactive pieces of software.

Proximity Warning System. To explore the options for
implementing a proximity warning system, Mirko first
considers three presentation modes: graphical, audio, and
haptic (vibration). For graphical presentation, he uses
an editor in his design environment and creates several
simple drawings. Then he opens the properties panel
and connects the variables from the car simulator to
the graphical properties of drawn regions. For example,
he creates a sketchlet in which an image’s transparency

121

Sketchifying: Bringing Innovation into Software Development

dynamically changes as a function of the distance from
the car in front of the driver. He then experiments with
other graphical properties, such as image size, position,
or orientation. He returns to the simulator and tries each
alternative. He also invites a few colleagues to try out and
comment on his ideas.

After exploring graphical options, he proceeds to create
audio sketchlets. He first tries a MIDI-generator service
and connects data coming from the sensor to MIDI note
parameters, such as pitch or tone duration. He also exper-
iments with a text-to-speech service, generating speech
based on the conditions derived from car data. Finally, he
explores using an MP3 player with prerecorded sounds.
He then goes back to the simulator and tries these alter-
natives.

Mirko also wants to try a vibration modality to present
navigation information, which the simulator doesn’t sup-
port. He decides to use a simple trick, starting an ap-
plication on his mobile phone that lets his design en-
vironment control the phone’s resources, including its
vibrator. Using gaffer tape, he fixes the mobile phone
to the steering wheel and creates several sketchlets that
map the distance from the car in front ofhim to vibration
patterns. Marko knows it’s not a very elegant solution,
but it lets him explore basic opportunities of this modality
with available resources and little work.

News Presentation. Mirko also plays with some other
options related to the application for presenting news. He
starts a Google news service in his design environment
and creates a simple page that presents an HTML output
of the news service. He then creates a condition for the
page’s visibility so that the news appears as an overlay
on part of the windshield, but only when the car’s speed

122

Sketchifying: Bringing Innovation into Software Development 123

is zero and the automobile is not in gear. He also exper-
iments with speech services that let a user set a news
search query by speech.

After finishing his work in the lab, Mirko decides to
collect some real-world experiences and try some of his
more promising sketchlets in a real car. With help from
engineers who are working on testing cars, Mirko gets an
extension of his design environment that uses a Bluetooth
connection to a test car’s on-board diagnostic (OBD)
system. With this addition, Mirko creates a simple setting
using his smartphone as a presentation device, positioned
under a windshield. He connects the smartphone to his
laptop, which uses a simple remote desktop client to
capture a part of a screen from his laptop. On the laptop,
Mirko is running the sketchlets that he created in the lab
and that are now connected to the car’s OBD system.
He asks a colleague to drive the car while he observes
a situation and videorecords a whole session for later
analysis.

During the process, Mirko constantly interacts with other
stakeholders, regularly presents his findings, and lets
clients and colleagues try out some of his sketchlets.
In this way, Mirko is helping develop new products by
providing realistic and tested ideas before and outside the
main development activity.

Software Sketchifying

I built on Buxton’s suggestion by introducing software sketchi-
fying into software product development as a complement to
prototyping and engineering. The sidebar presents a sketchi-

Sketchifying: Bringing Innovation into Software Development 124

fying example scenario of how it might work in developing
software systems for an automobile.

Software Sketchifying Approach. One key characteristic of
this approach is postponing the main development activity for
the benefit of free exploration, following a main principle of
creativity: to generate a good idea, you must generate multiple
ideas and then dispose of the bad ones. 1,4 Another key
characteristic is stimulating early involvement of nonengi-
neers. Such users often have expertise that’s important for
understanding customers and their needs. More specifically,
the example scenario in the sidebar illustrates several points
about software sketchifying:

« The designer’s main activity is exploration, learning
about a problem and potential solutions and answering
a question about what to build.

« Such explorative activity is heuristic, creative, and based
on trial and error, rather than incremental and iterative.
The designer generates several ideas, most of which
will be rejected. However, this process yields important
lessons and stimulates generation of novel ideas. These
lessons and ideas are the activity’s main outcome.

« The exploration activity is not accidental, but disciplined
and systematic.

« The exploration is holistic, enabling designers to reflect
on relations among user issues, software and hardware
possibilities, and the overall dynamics of human-com-
puter interaction. The ideas in the example scenario
are influenced not only by software but also by hu-
man factors and problems related to car mechanics and
equipment.

« The exploration enables early user involvement through

Sketchifying: Bringing Innovation into Software Development 125

simple but functional pieces of software in the form of
sketchlets.

« Working with real systems, such as the car simulator,
car diagnostic system, and Web services, lets a designer
learn about the possibilities and limitations of software
technologies and create conceptual proposals that are
more realistic.

Designers generally aren’t engineers who can program and
extend their design environments. However, they’re part of a
broader community of people who can help them learn and
extend the exploration space on an ad hoc basis. Sketchify-
ing supports this interaction without taking too much time,
thereby empowering nonengineers to explore emerging tech-
nologies and to test their ideas without additional help from
developers.

Software Sketchifying Tools. To support and explore this ap-
proach, Sketchlet combines elements from traditional sketch-
ing, software hacking, opportunistic software development,
and end-user development. Sketchlet builds on the results of
the Sketchify project (http://sketchify.sourceforge.net), which
explored possibilities to improve early design stages and
education of interaction designers. 8

Sketchlet has two main roles:

« to enable designers to create a number of simple pieces
of software—sketchlets—as a way to quickly and cheaply
explore software and hardware technologies and their
potential applications, and

« to support involvement of software engineers in short,
ad hoc sessions that give designers realistic pieces of
technologies that might be useful for design exploration.

Sketchifying: Bringing Innovation into Software Development 126

Sketchlet lets designers interact directly with software and
hardware technologies through a simple, intuitive user in-
terface. To simplify the integration with these technologies,
Sketchlet combines ideas from opportunistic software de-
velopment with techniques used by hacking and mashup
communities[9, 10]. A full description of Sketchlet is out of
scope for this article (see sketchlet.sf.net? for details).

Initial Sketchlet Applications and Results

I’'ve developed and applied the ideas about software sketchi-
fying in three projects that featured collaboration among
software engineers, interaction designers, and researchers.
In these projects, interaction designers and researchers were
primarily responsible for creating and evaluating novel con-
ceptual proposals and ideas:

« Connect & Drive project®. Several researchers used Sketch-
let to explore options for developing software systems
for cooperative adaptive cruise control systems in cars,
based on Wi-Fi communication between vehicles and
road infrastructure.

« Persuasive Technology, Allocation of Control, and Social
Values project. Sketchlet played a similar role as it did
in the Connect & Drive project, helping researchers
investigate software products for developing persuasive
technologies that encourage people to hand over control
to intelligent automation of cars.

*http://sketchlet.sf.net

*https://www.tue.nl/en/university/departments/industrial-design/research/
research-groups/user-centered-engineering/research/projects/explorations-in-
interactions/connect-drive/

http://sketchlet.sf.net/
https://www.tue.nl/en/university/departments/industrial-design/research/research-groups/user-centered-engineering/research/projects/explorations-in-interactions/connect-drive/
http://sketchlet.sf.net/
https://www.tue.nl/en/university/departments/industrial-design/research/research-groups/user-centered-engineering/research/projects/explorations-in-interactions/connect-drive/
https://www.tue.nl/en/university/departments/industrial-design/research/research-groups/user-centered-engineering/research/projects/explorations-in-interactions/connect-drive/
https://www.tue.nl/en/university/departments/industrial-design/research/research-groups/user-centered-engineering/research/projects/explorations-in-interactions/connect-drive/

Sketchifying: Bringing Innovation into Software Development 127

« RePar project (Resolving the Paradox of User Centered
Design®). Sketchlet was one of the flexible prototyping
tools in user-centered design processes, allowing design-
ers to create and evaluate (ill-defined) product concepts
early in the development.

Although Sketchlet is still in early development, the approach
and tool showed several positive effects in these projects.
First, it broadened the opportunities to constructively involve
nonengineers, including interaction designers, psychologists,
and students. Our tools empowered nonengineers to easily
explore relevant technologies and to independently create and
test their ideas. The companies involved benefited from their
nonengineering expertise and knowledge early in the design
process.

Sketchlet also promoted different collaboration between en-
gineers and nonengineer designers. Prior to using Sketchlet,
most of the companies followed the approach of making de-
signers responsible for creating a conceptual proposal, which
they gave to developers for implementation with little in-
teraction, except to clarify their designs. With Sketchlet, the
interaction between designers and engineers could work in
two ways, with engineers giving designers simplified versions
of software components and services—early in the design
process—that the engineers might use later in the implemen-
tation (see Figure 1).

“https://www.utwente.nl/ctw/opm/research/hcd/projects/Resolving%20the%
20paradox%200f%20user-centred%20design/

https://www.utwente.nl/ctw/opm/research/hcd/projects/Resolving%20the%20paradox%20of%20user-centred%20design/
https://www.utwente.nl/ctw/opm/research/hcd/projects/Resolving%20the%20paradox%20of%20user-centred%20design/
https://www.utwente.nl/ctw/opm/research/hcd/projects/Resolving%20the%20paradox%20of%20user-centred%20design/
https://www.utwente.nl/ctw/opm/research/hcd/projects/Resolving%20the%20paradox%20of%20user-centred%20design/

Sketchifying: Bringing Innovation into Software Development 128

“Classical” model

With Sketchlet...

Conceptual

design Implementation

Simplified components
and services, hacks

Designer Engineer

Conceptual
design

Implementation

Figure 1. Comparing the classical design-engineering interaction with
sketchifying. With sketchifying, supported by tools like Sketchlet, the
interaction between designers and engineers can work in two ways,
allowing engineers to give designers early access to simplified versions
of software components and services that the engineers might use later
in the implementation.

The connected services, although simplified, resemble real
components, and sketchlets expressed in terms of these ser-
vices come closer to the implementation platform that the
engineers will use. This change addressed one problem that
many companies experience when designers and engineers
need to work together—namely, the engineers perceive de-
signers’ ideas as unrealistic, too distant from available tech-
nology, and not precise enough to be useful. Through the
exploration of these services, designers can develop more
realistic expectations about the possibilities and limitations of
technologies, and incorporate this understanding into design
proposals.

Sketchifying: Bringing Innovation into Software Development 129

Lastly, Sketchlet influenced the mindset of companies toward
more and broader explorations early in the software design.
Sketchlet helped illustrate the potential of such exploration
and inspire the companies to think how other tools could be
used in a similar explorative way.

Sketchifying Benefits and Relation to Other
Approaches

Software sketchifying can help better define product require-
ments so that the subsequent engineering process has a clear
focus and goal. It promotes direct exploration of emerging
technologies and creation of working examples of simple
pieces of software with these technologies as a way to identify
potential problems and provoke reactions from users as early
as possible. The tool shows the effects of design decisions
on user experience and supports user testing before actual
development starts.

Exploring the possibilities and limitations of technologies
early in the design helps identify a number of problems or user
issues before investing in a significant development effort.
Discovering such problems later in the process could require
changes and additional effort. Early discovery is particularly
important in projects using emerging technologies, which
have many unknowns—including how well users will accept
them.

Promoting the constructive involvement of nonengineers in
the design process opens the door to help from experts in
fields such as human psychology, which in turn reduces
the burden on developers. Moreover, as Glass noted [1],
users who understand the application problem to be solved
are often more likely to produce innovation than computer

Sketchifying: Bringing Innovation into Software Development 130

technologists, who understand only the computing problem
to be solved. The sketchifying approach requires occasional
involvement of developers, but it aims to incorporate them in
short ad hoc sessions, and the intent is to empower nonengi-
neers to explore further without developers’ help. Once the
developer adapts some technology for Sketchlet, nonengi-
neers can work with this technology through a simple end-
user interface that does not require technical expertise or
programming knowledge.

Relation to Prototyping and Engineering

Software sketchifying complements existing prototyping and
engineering approaches by its focus on free exploration and a
trial-and-error approach versus a more iterative, incremental
approach of prototyping and engineering (see Figure 2).

Sketchifying supports users in constructing a novel idea and
enables nonengineers to actively contribute. This brings soft-
ware design closer to the practice of other engineering dis-
ciplines, in which the design phase precedes the main en-
gineering activity, and designers (usually nonengineers) are
encouraged to freely explore ideas before consolidating a few
of them for further development. For instance, it’s not unusual
for an industrial designer to generate 30 or more sketches a
day in the early stages of design, each possibly exploring a
different concept [4].

Software sketchifying precedes prototyping, which tests, com-
pares, and further develops aspects of selected ideas. With a
prototype in place, the development can take an evolutionary
approach. Prototyping should assess whether selected ideas
are feasible and should help decide whether to proceed with

Sketchifying: Bringing Innovation into Software Development 131

engineering. Prototyping aims at making an idea more de-
tailed and concrete, rather than coming up with radically new
ideas. Engineering turns the winning idea into a robust and
usable product.

Engineering

Stop further
development

explorative,

Prototyping

iterative, incremental
weeks, months), requires
substantial engineering
involvements

non-engineers

engineering

Figure 2. An idealized representation of relationships among sketchify-
ing, prototyping, and engineering. Sketchifying supports users in con-
structing a novel idea. It precedes prototyping, which tests, compares,
and further develops aspects of selected ideas. Engineering turns the
winning idea into a robust and usable product.

Relation to Other Software Tools

In principle, tools other than Sketchlet could implement the
sketchifying idea. However, many current tools can’t fully
support it because they’re not optimized for free exploration
and involvement of nonengineers. For example, we could use
standard programming languages, such as Java, C#, C++, or
programming tools oriented toward interaction design such

Sketchifying: Bringing Innovation into Software Development 132

as Flash and Processing to implement our example scenario.
However, programming requires significant expertise, time,
and effort—an investment that’s simply too high for the
intended purpose of generating new ideas and exploring
possibilities.

Existing low-fidelity prototyping environments provide ways
to quickly create prototypes with inputs taken from external
services or sensors. 11,12 These environments might be ex-
cellent choices for exploring interactions in various domains.
The problems I’'m addressing cross these domains and require
a variety of sensory inputs and links to diverse software
services as well as additional components specific to the
companies I'm working with. In addition, such tools often
require too much precise specification, partly because they’re
primarily developed for advanced prototyping rather than for
free and broad exploration.

Electronic sketching systems are another promising direction
for design tools, enabling designers to create interactive sys-
tems with ease using intuitive and natural pen gestures [13].
From the viewpoint of my example scenario, these systems
have the drawback of being specialized for specific domains
and used successfully only in inherently graphical domains
that have a stable and well-known set of primitives, such as
2D and 3D graphics or websites.

Another alternative is to use simple freehand drawings and
techniques such as screen prototyping. Such techniques can
help in exploring a solution’s graphical elements. However,
they can describe overall system interactions, such as sens-
ing device inputs and user response dynamics, only in very
abstract terms. Moreover, paper sketching doesn’t let users
explore the possibilities and limitations of emerging tech-
nologies. Direct exploration of such technologies yields more

Sketchifying: Bringing Innovation into Software Development 133

concrete ideas about how to best employ them.

Sketchlet borrows ideas from existing solutions, while trying
to overcome some of their limitations. I also see it as a comple-
ment to existing tools, rather than a replacement. On several
occasions, designers have used Sketchlet in conjunction with
other tools. For example, some of our users employed Max
MSP for signal processing and audio effects and Sketchlet for
connections to sensor devices and visualization.

My initial experiences with applying software sketchifying
are encouraging. However, an important limitation of this
approach is that it requires significant changes of current
development culture in its emphasis on postponing the start
of development to benefit free exploration, more active in-
volvement of nonengineers and end users, and new forms of
interaction between engineers and nonengineers prior to the
main development activity. Such changes, in my experience,
aren’t easy to achieve, but without them, the sketchifying
tools are less effective and tend to be used in a limited way.

Sketchifying: Bringing Innovation into Software Development 134

‘\/ .

Henry Ford with Model T, 1921

Sketchifying: Bringing Innovation into Software Development 135

References

1.

10.

11.

R.L. Glass, Software Creativity 2.0, developer. Books,
2006.

. J. Grudin, “Travel Back in Time: Design Methods of Two

Billionaire Industrialists,” ACM Interactions, vol. 15, no.
3, 2008, pp. 30-33.

J. Liker, The Toyota Way: 14 Management Principles
from the World’s Greatest Manufacturer, McGraw-Hill,
2004.

B. Buxton, Sketching User Experiences: Getting the De-
sign Right and the Right Design, Morgan Kaufmann,
2007.

B. Shneiderman, “Creativity Support Tools: Accelerating
Discovery and Innovation,” Comm. ACM, vol. 50, no. 12,
2007, pp. 20-32.

RN. Charette, “Why Software Fails,” IEEE Spectrum,
vol. 42, no. 9, 2005, pp. 42—49.

F. Brooks, “No Silver Bullet—Essence and Accidents of
Software Engineering,” Computer, vol. 20, no. 4, 1987,
pp. 10-19.

Z. Obrenovié¢ and].B. Martens, “Sketching Interactive
Systems with Sketchify,” ACM Trans. Computer-Human
Interaction, vol. 18, no. 1, 2011, article 4.

. B. Hartmann, S. Doorley, and S.R. Klemmer, “Hacking,

Mashing, Gluing: Understanding Opportunistic Design,’
IEEE Pervasive Computing, vol. 7, no. 3, 2009, pp. 46—54.
Z. Obrenovi¢,D. Gasevic, and A. Eliéns, “Stimulating
Creativity through Opportunistic Software Development,’
IEEE Software, vol. 25, no. 6, 2008, pp. 64-70.

M. Rettig, “Prototyping for Tiny Fingers,” Comm. ACM,
vol. 37, no. 4, 1994, pp. 21-27.

Sketchifying: Bringing Innovation into Software Development 136

12. Y.K.Lim, E. Stolterman, and]J. Tenenberg, “The Anatomy
of Prototypes: Prototypes as Filters, Prototypes as Man-
ifestations of Design Ideas; ACM Trans. Computer-
Human Interaction, vol. 15, no. 2, 2008, article 7.

13. J.A. Landay and B.A. Myers, “Sketching Interfaces: To-
ward More Human Interface Design,” Computer, vol. 34,
no. 3, 2001, pp. 56—64.

To Probe Further:
Selected Bibliography

Design Community

Schon D. (1983):
The Reflective Practitioner,
London: Temple Smith.

Simon H.A. (1996):
The Sciences of the Artificial,
The MIT Press; 3rd edition.

Lawson B. (2005):
How designers think,
Architectural Press, 4th edition.

Alexander C. (1964):
Notes on the Synthesis of Form,
Harvard University Press.

Cross N. (2006):

Designerly Ways of Knowing,

Springer.

Frayling C. (1993):

Research in Art and Design,

Royal College of Art Research Papers 1, pp. 1-5.

Hales, C. (1987):
An Analysis of the Engineering Design Process in an
Industrial Context, Gants Hill, 1987.

To Probe Further: Selected Bibliography 138

Rust C., Mottram J., Till J. (2007):

AHRC Research Review: Practice-Led Research in Art,
Design and Architecture’,

Elshaw.

Horvath, 1. (2001):

A contemporary survey of scientific research into engi-
neering design®,

13th International conference on engineering design, pp. 13-
20.

Horvath, 1. (2007):

Comparison of three methodological approaches of design
research’,

International Conference on Engineering Design, ICED’07.

Stolterman, E. (2008):

The nature of design practice and implications for inter-
action design research?®,

International Journal of Design 2(1), pp. 55-65.

Stappers, P. J. (2007):

Doing Design as a Part of Doing Research’,

In: Michel R, ed. Design Research Now: Essays and Selected
Projects: Birkenhauser, pp. 81-91.

MCcNiff' S. (2008):
Art-Based Research,
in J. Gary Knowles & Ardra L. Cole (Eds.) Handbook of

*http://arts.brighton.ac.uk/__data/assets/pdf_file/0018/43065/Practice-
Led_Review_Nov07.pdf
®http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.5463&rep=rep1&
type=pdf
"http://www.designsociety.org/download- publication/25512/comparison_of_
three_methodological_approaches_of_design_research
®http://www.ijdesign.org/ojs/index.php/IJDesign/article/view/240/148/
*http://dx.doi.org/10.1007/978-3-7643-8472-2_6
%http://www.moz.ac.at/files/pdf/fofoe/ff_abr.pdf

http://arts.brighton.ac.uk/__data/assets/pdf_file/0018/43065/Practice-Led_Review_Nov07.pdf
http://arts.brighton.ac.uk/__data/assets/pdf_file/0018/43065/Practice-Led_Review_Nov07.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.5463&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.5463&rep=rep1&type=pdf
http://www.designsociety.org/download-publication/25512/comparison_of_three_methodological_approaches_of_design_research
http://www.designsociety.org/download-publication/25512/comparison_of_three_methodological_approaches_of_design_research
http://www.ijdesign.org/ojs/index.php/IJDesign/article/view/240/148/
http://www.ijdesign.org/ojs/index.php/IJDesign/article/view/240/148/
http://dx.doi.org/10.1007/978-3-7643-8472-2_6
http://www.moz.ac.at/files/pdf/fofoe/ff_abr.pdf
http://arts.brighton.ac.uk/__data/assets/pdf_file/0018/43065/Practice-Led_Review_Nov07.pdf
http://arts.brighton.ac.uk/__data/assets/pdf_file/0018/43065/Practice-Led_Review_Nov07.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.5463&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.5463&rep=rep1&type=pdf
http://www.designsociety.org/download-publication/25512/comparison_of_three_methodological_approaches_of_design_research
http://www.designsociety.org/download-publication/25512/comparison_of_three_methodological_approaches_of_design_research
http://www.ijdesign.org/ojs/index.php/IJDesign/article/view/240/148/
http://dx.doi.org/10.1007/978-3-7643-8472-2_6
http://www.moz.ac.at/files/pdf/fofoe/ff_abr.pdf

To Probe Further: Selected Bibliography 139

the Arts in Qualitative Research: Perspectives, Methodologies,
Examples, and Issues

Polanyi, M. (1974):
Personal Knowledge,
Chicago: U Chicago Press.

Polanyi, M. (1983):
The Tacit Dimension,
Peter Smith Publisher.

Practice Research'', Wikipedia Page

Yee J.S.R. (2010):

Methodological Innovation in Practice-Based Design Doc-
torates’?,

Journal of Research Practice 6 (2)

Mellor D.H. (2015):
Artists and Engineers*’,
Philosophy 90(3), pp. 393-402

HCI / Interaction Design

Brooks F.P. (1988):

Grasping reality through illusion—interactive graphics serv-
ing science',

Proc. CHI °88. ACM, New York, NY, pp. 1-11.

Zimmerman, J., Forlizzi, J., and Evenson, S. (2007):

Research through design as a method for interaction de-
sign research in HCI",

Proc. CHI "07. ACM, New York, NY, pp. 493-502.

*http://en.wikipedia.org/wiki/Practice_research
http://jrp.icaap.org/index.php/jrp/article/view/196/193
https://doi.org/10.1017/50031819115000133
“http://dx.doi.org/10.1145/57167.57168
Phitp://dx.doi.org/10.1145/1240624.1240704

http://en.wikipedia.org/wiki/Practice_research
http://jrp.icaap.org/index.php/jrp/article/view/196/193
http://jrp.icaap.org/index.php/jrp/article/view/196/193
https://doi.org/10.1017/S0031819115000133
http://dx.doi.org/10.1145/57167.57168
http://dx.doi.org/10.1145/57167.57168
http://dx.doi.org/10.1145/1240624.1240704
http://dx.doi.org/10.1145/1240624.1240704
http://en.wikipedia.org/wiki/Practice_research
http://jrp.icaap.org/index.php/jrp/article/view/196/193
https://doi.org/10.1017/S0031819115000133
http://dx.doi.org/10.1145/57167.57168
http://dx.doi.org/10.1145/1240624.1240704

To Probe Further: Selected Bibliography 140

Zimmerman J., Stolterman E., and Forlizzi J. (2010):

An analysis and critique of Research through Design:
towards a formalization of a research approach’’,

DIS ’10. ACM, New York, NY, USA, pp. 310-319.

Greenberg S. and Buxton B. (2008):
Usability evaluation considered harmful (some of the time)"’,
CHI "08, 111-120.

Zimmerman J., Evenson S., Forlizzi J. (2004):
Discovering Knowledge in the Design Case'’,
Proc. Future Ground (2004). Design Research Society.

Brenda L. (2003):
Design Research: Methods and Perspectives,
MIT Press.

Koskinen I., Zimmerman]., Binder T., Redstrom J., Wensveen
S. (2011):

Design Research Through Practice: From the Lab, Field,
and Showroom,

Morgan Kaufmann Publishers.

Wolf TV., Rode J.A., Sussman J., and Wendy A. Kellogg.
(2006):

Dispelling “design” as the black art of CHI",

ACM CHI 06, pp. 521-530.

Gaver W. (2012):
What should we expect from research through design?*,
ACM CHI ’12. pp. 937-946.

Basballe D.A. and Halskov K. (2012):

*http://dx.doi.org/10.1145/1858171.1858228
"http://doi.acm.org/10.1145/1357054.1357074
*http://www.cs.cmu.edu/~johnz/pubs/2004_FutureGround.pdf
http://dx.doi.org/10.1145/1124772.1124853
*http://dx.doi.org/10.1145/2207676.2208538

http://dx.doi.org/10.1145/1858171.1858228
http://dx.doi.org/10.1145/1858171.1858228
http://doi.acm.org/10.1145/1357054.1357074
http://www.cs.cmu.edu/~johnz/pubs/2004_FutureGround.pdf
http://dx.doi.org/10.1145/1124772.1124853
http://dx.doi.org/10.1145/2207676.2208538
http://dx.doi.org/10.1145/1858171.1858228
http://doi.acm.org/10.1145/1357054.1357074
http://www.cs.cmu.edu/~johnz/pubs/2004_FutureGround.pdf
http://dx.doi.org/10.1145/1124772.1124853
http://dx.doi.org/10.1145/2207676.2208538

To Probe Further: Selected Bibliography 141

Dynamics of research through design®,
DIS ’12. ACM, New York, NY, USA, pp. 58-67.

Buxton, W. (2007):
Sketching user experience — Getting the design right and
the right design,

San Francisco, CA, Morgan Kaufmann.

Landay J. (2009):
I give up on CHI/UIST?,
Blog entry, Nov 7, 2009.

Sengers, P. (2006):
*Must design become ‘scientific’??,
DIS 06 Workshop on Exploring Design as a Research Activity.

Dourish, P. (2006):
Implications for design®,
Proc. CHI ’06. NY: ACM Press, 541-550.

Fallman, D. (2003):
Design-oriented human-computer interaction®,
Proc. CHI 2003, 225-32.

Gaver, W. (2006):

Learning from Experience: The Humble Role of Theory in
Practice-Based Research,

CHI 2006 Workshop on Theory and Methods for Experience-
Centered Design.

Goodman, E., Stolterman, E. & Wakkary, R. (2011):
Understanding Interaction Design Practicies®,

*'http://dx.doi.org/10.1145/2317956.2317967

*http://dubfuture.blogspot.nl/2009/11/i-give-up-on-chiuist.html

“http://www.antle.iat.sfu.ca/courses/iat834/resources/Sengers_06_design-v-
science-death-match.doc

**http://dx.doi.org/10.1145/1124772.1124855

Phttp://dx.doi.org/10.1145/642611.642652

*http://uxdesignpractice.com/papers/p1061-goodman.pdf

http://dx.doi.org/10.1145/2317956.2317967
http://dubfuture.blogspot.nl/2009/11/i-give-up-on-chiuist.html
http://www.antle.iat.sfu.ca/courses/iat834/resources/Sengers_06_design-v-science-death-match.doc
http://dx.doi.org/10.1145/1124772.1124855
http://dx.doi.org/10.1145/642611.642652
http://uxdesignpractice.com/papers/p1061-goodman.pdf
http://dx.doi.org/10.1145/2317956.2317967
http://dubfuture.blogspot.nl/2009/11/i-give-up-on-chiuist.html
http://www.antle.iat.sfu.ca/courses/iat834/resources/Sengers_06_design-v-science-death-match.doc
http://www.antle.iat.sfu.ca/courses/iat834/resources/Sengers_06_design-v-science-death-match.doc
http://dx.doi.org/10.1145/1124772.1124855
http://dx.doi.org/10.1145/642611.642652
http://uxdesignpractice.com/papers/p1061-goodman.pdf

To Probe Further: Selected Bibliography 142

CHI 2011, May 7-12, 2011, Vancouver, BC, Canada

Roedl D.J and Stolterman E. (2013):

Design research at CHI and its applicability to design
practice”’,

Proc. CHI ’13. pp. 1951-1954.

Rogers, Y. (2004):

New theoretical approaches for human-computer interac-
tion?®,

Annual review of information, science and technology 38 (pp.
87-143).

Blythe M. (2014):

Research through design fiction: narrative in real and
imaginary abstracts®,

Proc. CHI ‘14. ACM, New York, NY, USA, pp. 703-712.

Dachtera J., Randall D., and Wulf V. (2014):

Research on research: design research at the margins:
academia, industry and end-users™,

Proc. CHI ‘14. ACM, New York, NY, USA, pp. 713-722.

Dalsgaard P. and Dindler C. (2014):

Between theory and practice: bridging concepts in HCI
research®,

Proc. CHI ‘14, ACM, New York, NY, USA, pp. 1635-1644.

Claes S., Wouters N., Slegers K., and Moere A.V. (2015):
Controlling In-the-Wild Evaluation Studies of Public Dis-

plays™,

*"http://doi.acm.org/10.1145/2466110.2466257

**http://www.informatics.sussex.ac.uk/research/groups/interact/publications/
ARIST-Rogers.pdf

*http://dx.doi.org/10.1145/2556288.2557098

*http://dx.doi.org/10.1145/2556288.2557261

*'http://dx.doi.org/10.1145/2556288.2557342

*?http://dx.doi.org/10.1145/2702123.2702353

http://doi.acm.org/10.1145/2466110.2466257
http://doi.acm.org/10.1145/2466110.2466257
http://www.informatics.sussex.ac.uk/research/groups/interact/publications/ARIST-Rogers.pdf
http://www.informatics.sussex.ac.uk/research/groups/interact/publications/ARIST-Rogers.pdf
http://dx.doi.org/10.1145/2556288.2557098
http://dx.doi.org/10.1145/2556288.2557098
http://dx.doi.org/10.1145/2556288.2557261
http://dx.doi.org/10.1145/2556288.2557261
http://dx.doi.org/10.1145/2556288.2557342
http://dx.doi.org/10.1145/2556288.2557342
http://dx.doi.org/10.1145/2702123.2702353
http://dx.doi.org/10.1145/2702123.2702353
http://doi.acm.org/10.1145/2466110.2466257
http://www.informatics.sussex.ac.uk/research/groups/interact/publications/ARIST-Rogers.pdf
http://www.informatics.sussex.ac.uk/research/groups/interact/publications/ARIST-Rogers.pdf
http://dx.doi.org/10.1145/2556288.2557098
http://dx.doi.org/10.1145/2556288.2557261
http://dx.doi.org/10.1145/2556288.2557342
http://dx.doi.org/10.1145/2702123.2702353

To Probe Further: Selected Bibliography 143

Proc. CHI ‘15, ACM, New York, NY, USA, pp. 81-84.

Luusua A., Ylipulli J., Jurmu M., Pihlajaniemi H., Markkanen
P., and Ojala T. (2015):

Evaluation Probes®,

Proc. CHI ‘15, ACM, New York, NY, USA, pp. 85-94.

Remy C., Gegenbauer S., and Huang E.M. (2015):

Bridging the Theory-Practice Gap: Lessons and Chal-
lenges of Applying the Attachment Framework for Sus-
tainable HCI Design*,

Proc. CHI ‘15, ACM, New York, NY, USA, pp. 1305-1314.

Bardzell J., Bardzell S., and Hansen L.K. (2015):

Immodest Proposals: Research Through Design and Knowl-
edge®,

Proc. CHI ‘15, ACM, New York, NY, USA, pp. 2093-2102.

Fox S. and Rosner D.K. (2016):

Continuing the Dialogue: Bringing Research Accounts

Back into the Field®,
Proc. CHI ‘16, ACM, New York, NY, USA, pp. 1426-1430.

Dalsgaard P. (2016):
Experimental Systems in Research through Design®’,
Proc. CHI ‘16, ACM, New York, NY, USA, pp. 4991-4996.

Information Systems / Software Design /
Computer Sciences

Brooks F.P. (2010):
The Design of Design,

**http://dx.doi.org/10.1145/2702123.2702466
**http://dx.doi.org/10.1145/2702123.2702567
>*http://dx.doi.org/10.1145/2702123.2702400
*https://doi.org/10.1145/2858036.2858054
*"https://doi.org/10.1145/2858036.2858310

http://dx.doi.org/10.1145/2702123.2702466
http://dx.doi.org/10.1145/2702123.2702567
http://dx.doi.org/10.1145/2702123.2702567
http://dx.doi.org/10.1145/2702123.2702567
http://dx.doi.org/10.1145/2702123.2702400
http://dx.doi.org/10.1145/2702123.2702400
https://doi.org/10.1145/2858036.2858054
https://doi.org/10.1145/2858036.2858054
https://doi.org/10.1145/2858036.2858310
http://dx.doi.org/10.1145/2702123.2702466
http://dx.doi.org/10.1145/2702123.2702567
http://dx.doi.org/10.1145/2702123.2702400
https://doi.org/10.1145/2858036.2858054
https://doi.org/10.1145/2858036.2858310

To Probe Further: Selected Bibliography 144

Addison-Wesley Professional.

Hevner A.R., March S.T., Park J., and Ram S. (2004):
Design science in information systems research,
MIS Q. 28(1), pp. 75-105.

Wieringa R. (2009):
Design science as nested problem solving*,
In Proc. DESRIST ’09. ACM, New York, NY, USA, Article 8.

desrist.org (2016):*
design science research in information systems and technol-

ogy

Brooks F.P. (1995):
The Mythical Man-Month,
Addison-Wesley Professional; 2nd edition.

Glass R. L. (2006):
Software Creativity 2.0,
developer* Books, 2006.

Knuth D.E. (1974):

Computer Programming as an Art — Turing Award Lec-
ture®,

Comm. ACM 17 (12), pp. 667—673.

Interview, Donald Knuth: A life’s work interrupted®,
Com. ACM 51, 8 (Aug. 2008), pp. 31-35.

Interview, Donald Knuth: The ‘art’ of being Donald Knuth*?,
Commun. ACM 51, 7 (July 2008), pp. 35-39.

Knuth D.

*http://wise.vub.ac.be/thesis_info/Design_Science_Wieringa.pdf
**desrist.org

“*http://dx.doi.org/10.1145/361604.361612
“‘http://dx.doi.org/10.1145/1378704.1378715
“*http://doi.acm.org/10.1145/1364782.1364794

http://wise.vub.ac.be/thesis_info/Design_Science_Wieringa.pdf
desrist.org
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/1378704.1378715
http://doi.acm.org/10.1145/1364782.1364794
http://wise.vub.ac.be/thesis_info/Design_Science_Wieringa.pdf
desrist.org
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/1378704.1378715
http://doi.acm.org/10.1145/1364782.1364794

To Probe Further: Selected Bibliography 145

The Art of Computer Programming (TAOCP)*,
A comprehensive monograph that covers many kinds of
programming algorithms and their analysis

Broy M. (2011):
Can Practitioners Neglect Theory and Theoreticians Ne-

glect Practice?*,
IEEE Computer 44(10), pp. 19-24.

Gamma E., Helm R, Johnson R., and Vlissides J. (1995):
Design Patterns: Elements of Reusable Object-Oriented
Software,

Addison-Wesley Longman Publishing Co., Inc.

Glass R. L., Ramesh V., and Vessey 1. (2004):
An analysis of research in computing disciplines®,
Commun. ACM 47(6), pp. 89-94.

Learning Sciences

Design-Based Research in Education*® @ EduTech Wiki
Design-Based Research®” @ Wikipedia

Edelson D.C. (2002),

Design Research: What We Learn When We Engage in
Design,

Journal of the Learning Sciences 11(1), pp. 105—121.

Akker J. van den, Gravemeijer K., McKenny S., and Nieveen
N. (Eds.) (2006):
Educational Design Research*®

“http://www-cs-faculty.stanford.edu/~uno/taocp.html

“*http://doi.ieeecomputersociety.org/10.1109/MC.2011.305

“*http://dx.doi.org/10.1145/990680.990686

“Shttp://edutechwiki.unige.ch/en/Design-based_research

“"http://en.wikipedia.org/wiki/Design-based_research

“*http://p4mristkipngawi.files.wordpress.com/2011/08/educational-design-
research.pdf

http://www-cs-faculty.stanford.edu/~uno/taocp.html
http://doi.ieeecomputersociety.org/10.1109/MC.2011.305
http://doi.ieeecomputersociety.org/10.1109/MC.2011.305
http://dx.doi.org/10.1145/990680.990686
http://edutechwiki.unige.ch/en/Design-based_research
http://en.wikipedia.org/wiki/Design-based_research
http://p4mristkipngawi.files.wordpress.com/2011/08/educational-design-research.pdf
http://www-cs-faculty.stanford.edu/~uno/taocp.html
http://doi.ieeecomputersociety.org/10.1109/MC.2011.305
http://dx.doi.org/10.1145/990680.990686
http://edutechwiki.unige.ch/en/Design-based_research
http://en.wikipedia.org/wiki/Design-based_research
http://p4mristkipngawi.files.wordpress.com/2011/08/educational-design-research.pdf
http://p4mristkipngawi.files.wordpress.com/2011/08/educational-design-research.pdf

To Probe Further: Selected Bibliography 146

Oxon: Routledge.

Barab S. A., & Kirshner D. (Eds.). (2001):
Rethinking methodology in the learning sciences, 44 [Spe-
cial Issue] J. Learning Sciences 10(1&2).

Barab S. A., & Squire K. (Eds.). (2004):
Design-based research,
[Special Issue] Journal of Learning Sciences 13(1).

Brown A. L. (1992):

Design experiments: Theoretical and methodological chal-
lenges in creating complex interventions in classroom
settings®’,

J. Learn. Sci. 2(2), pp. 141-178.

Cobb P., diSessa A., Lehrer R., and Schauble L. (2003):
Design experiments in educational research,
Ed. Researcher 32(1), pp. 9-13.

Collins A. (1990):
Toward a Design Science of Education,
New York: Bank Street College of Education.

Collins A., Joseph D., Bielaczyc K. (2004):
Design Research: Theoretical and Methodological Issues™,
Journal Of The Learning Sciences 13(1), pp. 15-42.

Erickson F. & Gutierrez K. (2002):
Culture, rigor, and science in educational research’’,
Educational Researcher, 31(8), pp. 21-24.

Kelly A. E. (Ed.) (2003):
The role of design in educational research,

[Special Issue] Educational Researcher 32(1).

“http://www.cs.uml.edu/ecg/projects/cricketscience/pdf/brown- 1992-design-
experiments.pdf

°http://treeves.coe.uga.edu/EDIT9990/Collins2004.pdf

*http://www.jstor.org/stable/3594390

http://www.cs.uml.edu/ecg/projects/cricketscience/pdf/brown-1992-design-experiments.pdf
http://www.cs.uml.edu/ecg/projects/cricketscience/pdf/brown-1992-design-experiments.pdf
http://www.cs.uml.edu/ecg/projects/cricketscience/pdf/brown-1992-design-experiments.pdf
http://treeves.coe.uga.edu/EDIT9990/Collins2004.pdf
http://www.jstor.org/stable/3594390
http://www.cs.uml.edu/ecg/projects/cricketscience/pdf/brown-1992-design-experiments.pdf
http://www.cs.uml.edu/ecg/projects/cricketscience/pdf/brown-1992-design-experiments.pdf
http://treeves.coe.uga.edu/EDIT9990/Collins2004.pdf
http://www.jstor.org/stable/3594390

To Probe Further: Selected Bibliography 147

Maxwell J. A. (2004):

Causal explanation, qualitative research, and scientific
inquiry in education®

Ed. Researcher 33(2).

Sandoval W.A., Bell P. (Eds.) (2004):

Design-based research methods for studying learning in

context,
[Special Issue] Educational Psychologist 39(4).

*?http://wwwedu.oulu.fi/tohtorikoulutus/jarjestettava_opetus/maxwell_scientific_
inquiry.pdf

http://wwwedu.oulu.fi/tohtorikoulutus/jarjestettava_opetus/maxwell_scientific_inquiry.pdf
http://wwwedu.oulu.fi/tohtorikoulutus/jarjestettava_opetus/maxwell_scientific_inquiry.pdf
http://wwwedu.oulu.fi/tohtorikoulutus/jarjestettava_opetus/maxwell_scientific_inquiry.pdf
http://wwwedu.oulu.fi/tohtorikoulutus/jarjestettava_opetus/maxwell_scientific_inquiry.pdf

	Table of Contents
	Foreword
	I RESEARCH & PRACTICE
	The Curious Case Of ``Small'' Researchers-Practitioners
	The Hawthorne Studies
	Is Academia Guilty of Intellectual Colonization of Practice?
	The Four Points of the Research Compass
	Insights from the Past
	The Researchers-Practitioners Manifesto

	II DESIGN & RESEARCH
	Design-Based Research
	Doing Design-Based Research in Practice
	Design As a Political Activity

	III NEW IDEAS
	Experiential Learning of Computing Concepts
	Sketchifying: Bringing Innovation into Software Development

	To Probe Further: Selected Bibliography

