Notebook - An Elegant Puzzle: Systems of Engineering kindle
Management

Larson, Will

Page 26 | Highlight

my appreciation for management, and engineering management in particular, has grown, and I've
come to view the field as a series of elegant, rewarding, and important puzzles.

Page 26 | Highlight

Organizational design gets the right people in the right places, empowers them to make
decisions, and then holds them accountable for their results.

Page 31 | Highlight

| An organization is a collection of people working toward a shared goal.

Page 31 | Highlight

| truly extraordinary thing is that all organizations work.

Page 31 | Highlight
When | have a problem that | want to solve quickly and cheaply, | start thinking about process
design. A problem | want to solve permanently and we have time to go slow? That’s a good time

to evolve your culture. However, if process is too weak a force, and culture too slow, then
organizational design lives between those two.

Page 32 | Highlight

| Managers should support six to eight engineers

Page 32 | Highlight

| Tech Lead Managers (TLMs). Managers supporting fewer than four engineers tend to function as

Page 32 | Highlight Continued klndle

| TLMs, taking on a share of design and implementation work.

Page 32 | Highlight
Coaches. Managers supporting more than eight or nine engineers typically act as coaches and

safety nets for problems. They are too busy to actively invest in their team or their team’s area of
responsibility.

Page 32 | Highlight

| Managers-of-managers should support four to six managers

Page 32 | Highlight

Ramping up. Managers supporting fewer than four other managers should be in a period of
active learning on either the problem domain or on transitioning from supporting engineers to
supporting managers.

Page 33 | Highlight

Coaches. Similar to supporting a large team of engineers, supporting a large team of managers
leaves you functioning purely as a problem-solving coach.

Page 33 | Highlight

| On-call rotations want eight engineers

Page 33 | Highlight

Small teams (fewer than four members) are not teams I’'ve sponsored quite a few teams of one or
two people, and each time I’'ve regretted it. To repeat: | have regretted it every single time. An
important property of teams is that they abstract the complexities of the individuals that compose
them. Teams with fewer than four individuals are a sufficiently leaky abstraction that they function
indistinguishably from individuals. To reason about a small team’s delivery, you’ll have to know
about each on-call shift, vacation, and interruption.

Page 34 | Highlight klndle

| Keep innovation and maintenance together.

Page 34 | Highlight

| will avoid creating a two-tiered class system of innovators and maintainers.

Page 34 | Highlight
Teams should be six to eight during steady state. To create a new team, grow an existing team to

eight to ten, and then bud into two teams of four or five. Never create empty teams. Never leave
managers supporting more than eight individuals.

Page 35 | Highlight

| When you talk about growing an organization, the conversation usually leads to hiring.

Page 35 | Highlight

Teams are slotted into a continuum of four states: A team is falling behind if each week their
backlog is longer than it was the week before.

Page 35 | Highlight

A team is treading water if they’re able to get their critical work done, but are not able to start
paying down technical debt or begin major new projects.

Page 36 | Highlight

A team is repaying debt when they’re able to start paying down technical debt, and are beginning
to benefit from the debt repayment snowball: each piece of debt you repay leads to more time to
repay more debt. A team is innovating when their technical debt is sustainably low, morale is
high, and the majority of work is satisfying new user needs. Teams want to climb from falling
behind to innovating, while entropy drags them backward. Each state requires a different tact.

Page 36 | Highlight klndle

| adopting the appropriate system solution for their current state.

Page 37 | Highlight

When the team is falling behind, the system fix is to hire more people until the team moves into
treading water.

Page 37 | Highlight

Sometimes people instead attempt to capture more resources from the existing company, and I’
m pretty negative on that. People are not fungible, and generally folks end up in useful places, so
I’m skeptical of reassigning existing individuals to drive optimality.

Page 37 | Highlight

When the team is treading water, the system fix is to consolidate the team’s efforts to finish more
things, and to reduce concurrent work until they’re able to begin repaying debt (e.g., limit work in
progress).

Page 37 | Highlight

| When the team is repaying debt, the system fix is to add time.

Page 37 | Highlight

Innovating is a bit different, because you’ve nominally reached the end of the continuum, but
there is still a system fix! In this case, it’s to maintain enough slack in your team’s schedule that
the team can build quality into their work, operate continuously in innovation, and avoid
backtracking.

Page 39 | Highlight

their limited resources, but resist that indecision-framed-as-fairness: it’s not a fair outcome if no
one gets anything. For each constraint, prioritize one team at a time. If most teams are falling
behind, then hire onto one team until it’s staffed enough to tread water, and only then move to
the next.

Page 39 | Highlight klndle

Adding new individuals to a team disrupts that team’s gelling process, so I've found it much
easier to have rapid growth periods for any given team, followed by consolidation/gelling periods
during which the team gels. The organization will never stop growing, but each team will.

Page 39 | Highlight

| A case against top-down global optimization

Page 40 | Highlight

| I’'m skeptical of reallocating individuals to address global priority shifts,

Page 40 | Highlight

Team first Fundamentally, | believe that sustained productivity comes from high-performing
teams, and that disassembling a high-performing team leads to a significant loss of productivity,
even if the members are fully retained. In this worldview, high-performing teams are sacred, and I
m quite hesitant to disassemble them. Teams take a long time to gel. When a group has been
working together for a few years, they understand each other and know how to set each other up
for success in a truly remarkable way.

Page 40 | Highlight

recommends rapidly hiring into teams loaded down by technical debt, not into innovating teams,
which avoids incurring re-gelling costs on high-performing teams.

Page 40 | Highlight

most teams have high fixed costs and relatively small variable costs: moving one person can shift
an innovating team back into falling behind, and now neither team is doing particularly well.

Page 41 | Highlight

| My rule of thumb is that it takes eight engineers on a team to support a two-tier on-call rotation,

Page 41 | Highlight klndle

The expected time to complete a new task approaches infinity as a team’s utilization approaches
100 percent,

Page 42 | Highlight

| Shift scope; rotate

Page 42 | Highlight

| I’'ve found it most fruitful to move scope between teams, preserving the teams themselves.

Page 42 | Highlight

if it’s a choice of moving people rapidly or shifting scope rapidly, I've found that the latter is more
effective and less disruptive.

Page 42 | Highlight

The other approach that I've seen work well is to rotate individuals for a fixed period into an area
that needs help. The fixed duration allows them to retain their identity and membership in their
current team, giving their full focus to helping out, rather than splitting their focus between
performing the work and finding membership in the new team. This is also a safe way to measure

how much slack the team really has!

Page 43 | Highlight

| Productivity in the age of hypergrowth

Page 43 | Highlight

| More engineers, more problems

Page 44 | Highlight

| Productively integrating large numbers of engineers is hard.

Page 44 | Highlight klndle

a scenario in which untrained engineers increasingly outnumber the trained engineers, and each
trained engineer is devoting much of their time to training a couple of newer engineers.

Page 46 | Highlight

For every additional order of magnitude of engineers, you need to design and maintain a new
layer of management. For every ~10 engineers, you need an additional team, which requires more
coordination.

Page 46 | Highlight

Each engineer means more commits and deployments per day, creating load on your
development tools. Most outages are caused by deployments, so more deployments drive more
outages, which in turn require incident management, mitigations, and postmortems. Having more
engineers leads to more specialized teams and systems, which require increasingly small on-call
rotations so that your on-call engineers have enough system context to debug and resolve
production issues. Consequently, relative time invested in on-call goes up.

Page 46 | Highlight

| Only your trained engineers can go on-call.

Page 47 | Highlight

| Systems survive one magnitude of growth

Page 47 | Highlight

Most system-implemented systems are designed to support one to two orders’ magnitude of
growth from the current load.

Page 48 | Highlight

Ways to manage entropy My favorite observation from The Phoenix Project by Gene Kim, Kevin
Behr, and George Spafford15 is that you only get value from projects when they finish: to make
progress, above all else, you must ensure that some of your projects finish.

Page 48 | Highlight klndle

| hiring and training are often a team’s biggest time investment.

Page 49 | Highlight

If your engineer is doing more than three interviews a week, it is a useful act of mercy to give
them a month off every three or four months.

Page 49 | Highlight
The strategy here is to funnel interruptions into an increasingly small area, and then automate

that area as much as possible. Ask people to file tickets, create chatbots that automate filing
tickets, create a service cookbook, and so on.

Page 50 | Highlight

| ownership registry,

Page 50 | Highlight

Finally, the one thing that I’'ve found at companies with very few interruptions and have observed
almost nowhere else: really great, consistently available documentation. It’s probably even harder
to bootstrap documentation into a non-documenting company than it is to bootstrap unit tests
into a non-testing company, but the best solution to frequent interruptions I’'ve seen is a culture

of documentation, documentation reading, and a documentation search that actually works.

Page 50 | Highlight

if you can keep your interfaces generic, then you are able to skip the migration phase of system
re-implementation, which tends to be the longest and trickiest phase,

Page 51 | Highlight

a related antipattern is the gatekeeper pattern. Having humans who perform gatekeeping
activities creates very odd social dynamics, and is rarely a great use of a human’s time. When at
all possible, build systems with sufficient isolation that you can allow most actions to go forward.
And when they do occasionally fail, make sure that they fail with a limited blast radius.

Page 51 | Highlight klndle

treat gatekeeping as a significant implementation bug rather than as a stability feature to be
emulated.

Page 51 | Highlight

managing rapid growth is more along the lines of stacking small wins than identifying silver
bullets.

Page 51 | Highlight

| learning to say no in a way that is appropriate to your company’s culture.

Page 51 | Highlight

| Where to stash your organizational risk?

Page 51 | Highlight

organizational debt. This is the organizational sibling of technical debt, and it represents things
like biased interview processes and inequitable compensation mechanisms.

Page 52 | Highlight

identify a few areas to improve, ensure you’re making progress on those, and give yourself
permission to do the rest poorly.

Page 52 | Highlight

my organizational philosophy is to stabilize team-by-team and organization-by-organization.
Ensuring any given area is well on the path to health before moving my focus.

Page 53 | Highlight

Succession planning is thinking through how the organization would function without you,
documenting those gaps, and starting to fill them in.

Page 53 | Highlight klndle

| The first step in succession planning is to figure out what you do.

Page 53 | Highlight

| Take a look at your calendar and write down your role in meetings.

Page 55 | Highlight

| The first should cover the easiest gaps to close.

Page 55 | Highlight

| The latter will be the riskiest gaps.

Page 61 | Highlight

The best changes often go unnoticed, moving from one moment of stability to another, with
teams and organizations feeling stable at every step. The key tools for leading efficient change
are systems thinking, metrics, and vision.

Page 62 | Highlight

The fundamental observation of systems thinking is that the links between events are often more
subtle than they appear.

Page 62 | Highlight

| few events occur in a vacuum.

Page 62 | Highlight

Changes to stocks are called flows. These can be either inflows or outflows. Training a new
manager is an inflow, and a trained manager who departs the company is an outflow.

10

Page 62 | Highlight klndle

| information link. This indicates that the value of a stock is a factor in the size of a flow.

Page 63 | Highlight

four measures of developer velocity: Delivery lead time is the time from the creation of code to its
use in production. Deployment frequency is how often you deploy code. Change fail rate is how
frequently changes fail. Time to restore service is the time spent recovering from defects.

Page 64 | Highlight

| Product management: exploration, selection, validation

Page 65 | Highlight

Product management is an iterative elimination tournament, with each round consisting of
problem discovery, problem selection, and solution validation. Problem discovery is uncovering
possible problems to work on, problem selection is filtering those problems down to a viable
subset, and solution validation is ensuring that your approach to solving those problems works
as cheaply as possible.

Page 66 | Highlight

Taking the time to evaluate which problem to solve is one of the best predictors I’'ve found of a
team’s long-term performance. The themes that I've found useful for populating the problem
space are: Users’ pain. What are the problems that your users experience?

Page 66 | Highlight

| Users’ purpose. What motivates your users to engage with your systems?

Page 66 | Highlight

Benchmark. Look at how your company compares to competitors in the same and similar
industries.

11

Page 66 | Highlight klndle

you learn the most interesting things by considering both fairly similar and rather different
companies. Cohorts. What is hiding behind your clean distributions?

Page 66 | Highlight

new kinds of users with surprising needs. Competitive advantages. By understanding the areas

you’re exceptionally strong in,

Page 66 | Highlight

Competitive moats. Moats are a more extreme version of a competitive advantage. Moats
represent a sustaining competitive advantage,

Page 67 | Highlight

Compounding leverage. What are the composable blocks you could start building today that
would compound into major product or technical leverage10 over time?

Page 67 | Highlight

| Problem selection

Page 67 | Highlight

Surviving the round. Thinking back to the iterative elimination tournament, what do you need to

do to survive the current round?

Page 67 | Highlight

Surviving the next round. Where do you need to be when the next round in order to avoid getting
eliminated then?

Page 68 | Highlight
| Winning rounds. It’s important to survive every round, but it’s also important to eventually win a

12

Page 68 | Highlight Continued klndle

| round!

Page 68 | Highlight

Consider different time frames. When folks disagree about which problems to work on, | find that
the conflict is most frequently rooted in different assumptions about the correct time frame to
optimize for.

Page 68 | Highlight

| Industry trends. Where do you think the industry is moving,

Page 68 | Highlight

| Return on investment. Personally, | think people often under-prioritize quick, easy wins.

Page 68 | Highlight

Experiments to learn. What could you learn now that would make problem selection in the future
much easier?

Page 68 | Highlight

Write a customer letter. Write the launch announcement that you would send after finishing the
solution.

Page 69 | Highlight

| Identify prior art. How do peers across the industry approach this problem? The

Page 69 | Highlight

| Find reference users. Can you find users who are willing to be the first users for the solution?

13

Page 69 | Highlight klndle

Prefer experimentation over analysis. It’s far more reliable to get good at cheap validation than it
is to get great at consistently picking the right solution.

Page 69 | Highlight

Find the path more quickly traveled. The most expensive way to validate a solution is to build it in
its entirety.

Page 69 | Highlight

| Justify switching costs. What will the costs of switching be for users who move to your solution?

Page 69 | Highlight

As an aside, I’'ve found that most aspects of running a successful technology migration12 overlap
with good solution validation! This is a very general skill that will repay many times over the time
you invest in learning it. Putting these three elements in place today—exploration, selection, and
validation—won’t make you an exceptional product manager overnight, but they will provide a
solid starting place to develop those skills and perspective for the next time you find yourself

donning the product manager hat.

Page 70 | Highlight

agreeing on strategy and vision has been the most effective approach that I’'ve found to
alignment at scale.

Page 70 | Highlight

Strategies are grounded documents which explain the trade-offs and actions that will be taken to
address a specific challenge. Visions are aspirational documents that enable individuals who don
t work closely together to make decisions that fit together cleanly.

Page 71 | Highlight

A strategy recommends specific actions that address a given challenge’s constraints. A structure
that I’'ve found extremely effective13 is described in Good Strategy/Bad Strategy by Richard

14

Page 71 | Highlight Continued k|nd|.e

Rumelt,14 and has three sections: diagnosis, policies, and actions. The diagnosis is a theory
describing the challenge at hand.

Page 72 | Highlight

identify policies that you will apply to address the challenge. These describe the general
approach that you’ll take, and are often trade-offs between two competing goals.

Page 72 | Highlight

| allow short-term performance to dip in order to invest into long-term performance,

Page 72 | Highlight

| When you apply your guiding policies to your diagnosis, you get your actions. Folks

Page 72 | Highlight

Because strategies are specific to a given problem, it’s okay —and even encouraged —to write
quite a few of them.

Page 73 | Highlight

If strategies describe the harsh trade-offs necessary to overcome a particular challenge, then
visions describe a future in which those trade-offs are no longer mutually exclusive. An effective
vision helps folks think beyond the constraints of their local maxima, and lightly aligns progress
without requiring tight centralized coordination.

Page 73 | Highlight

Visions should be detailed, but the details are used to illustrate the dream vividly, not to
prescriptively constrain its possibilities.

15

Page 73 | Highlight klndle

Vision statement: A one- or two-sentence aspirational statement to summarize the rest of the
document.

Page 73 | Highlight

| repeat at each meeting, planning period, and strategy review.

Page 73 | Highlight

| Value proposition: How will you be valuable to your users and to your company?

Page 73 | Highlight

Capabilities: What capabilities will the product, platform, or team need in order to deliver on your
value proposition?

Page 74 | Highlight

Solved constraints: What are the constraints that you’re limited by today, but that in the future
you’ll no longer be constrained by?

Page 74 | Highlight

| Future constraints: What are the constraints that you expect to encounter in this wonderful future?

Page 74 | Highlight

Reference materials: Link all the existing plans, metrics, updates, references, and documents into
an appendix for those who want to understand more of the thinking that went into the vision.

Page 74 | Highlight

Narrative: Once you’ve written the previous sections, the last step of writing a compelling vision
is to synthesize all those details into a short—maybe one-page—narrative that serves as an easy-
to-digest summary.

16

Page 74 | Highlight klndle

You’ll know a vision is succeeding when people reference the document to make their own
decisions,

Page 74 | Highlight

Test the document! This is a core leadership tool, and your first version will almost certainly be
bad. Write a draft, sit down with a few different folks to get their perspectives, then iterate.

Page 75 | Highlight

| Refresh periodically. Take some time every year to refresh the vision,

Page 75 | Highlight
Use present tense. This makes the writing impactful and concise, and conveys a sense of

confidence about the future. Write simply. Often, visions are saturated with buzzwords, which
turns readers off.

Page 75 | Highlight

| one vision for every complete distinct area, but no more.

Page 75 | Highlight

| when top-level planning shifts from discussing specific projects to talking about goals.

Page 75 | Highlight

| goals decouple the “what” from the “how,”

Page 76 | Highlight

You’ll know a goal is just a number when you read it and aren’t sure if it’s ambitious or whether it
matters. Good goals are a composition of four specific kinds of numbers: A target states where
you want to reach. A baseline identifies where you are today. A trend describes the current

velocity. A
17

Page 76 | Highlight Continued klndle

| time frame sets bounds for the change.

Page 76 | Highlight
“In Q83, we will reduce time to render our frontpage from 600ms (p95) to 300ms (p95). In Q2,
render time increased from 500ms to 600ms.” The two tests of an effective goal are whether

someone who doesn’t know much about an area can get a feel for a goal’s degree of difficulty,
and whether afterward they can evaluate if it was successfully achieved.

Page 76 | Highlight
There are two particularly interesting kinds of goals: investments and baselines. Investments

describe a future state that you want to reach, and baselines describe aspects of the present that
you want to preserve.

Page 77 | Highlight

I’'ve found that you should specify as few investment goals as possible, maybe three, and that
those should be the focus of planning discussions.

Page 78 | Highlight

| Infrastructure cost is a great example of a baseline metric.20

Page 78 | Highlight

| “Maintain infrastructure costs at their current percentage of net revenue of 30 percent.”

Page 78 | Highlight

Explore: The first step is to get data in an explorable format in your data warehouse, an SQL
database, or even an Excel spreadsheet.

18

Page 79 | Highlight klndle

Dive: Once you know the three or four major contributors, go deep on understanding those areas
and the levers that drive them.

Page 79 | Highlight
Attribute: For most company-level metrics (cost, latency, development velocity, etc.), the first

step of diving will uncover one team who are nominally accountable for the metric’s performance,
but they are typically a cloak.

Page 79 | Highlight

Contextualize: Armed with the attribution data, start to build context around each team’s

performance.

Page 79 | Highlight

Nudge: Once you’ve built context around the data so that folks can interpret it, the next step is to
start nudging them to action!

Page 80 | Highlight
What I've found effective is to send push notifications, typically email, to teams whose metric has

changed recently, both in terms of absolute change and in terms of their benchmarked
performance against their cohort.

Page 80 | Highlight

Baseline: In the best case, you’ll be able to drive the organizational impact you need with
contextualized nudges, but in some cases that isn’t quite enough.

Page 80 | Highlight
Review: The final phase, which hopefully you won’t need to reach, is running a monthly or

quarterly review that looks at each team’s performance, and reaching out to teams to advocate
for prioritization

19

Page 81 | Highlight klndle

| Migrations: the sole scalable fix to tech debt

Page 81 | Highlight
Migrations are both essential and frustratingly frequent as your codebase ages and your business

grows: most tools and processes only support about one order of magnitude of growth22 before
becoming ineffective,

Page 82 | Highlight

Migrations matter because they are usually the only available avenue to make meaningful
progress on technical debt.

Page 82 | Highlight

there is very little low-hanging fruit to reduce technical debt, and most remaining options require
many teams working together to implement them. The result: migrations.

Page 82 | Highlight

the awkward territory of reduced immediate contribution today in exchange for more capacity
tomorrow.

Page 82 | Highlight

Migrations are the only mechanism to effectively manage technical debt as your company and

code grow.

Page 83 | Highlight

The good news is that while migrations are hard, there is a pretty standard playbook that works
remarkably well: de-risk, enable, then finish.

20

Page 83 | Highlight klndle

| The first phase of a migration is de-risking it, and to do so as quickly and cheaply as possible.

Page 83 | Highlight

| Don’t start with the easiest migrations, which can lead to a false sense of security.

Page 83 | Highlight

| better to slow down and build tooling to programmatically migrate the easy 90 percent.

Page 83 | Highlight
figure out the self-service tooling and documentation that you can provide to allow teams to

make the necessary changes without getting stuck. The best migration tools are incremental and
reversible:

Page 84 | Highlight

Spending an extra two days intentionally making your documentation clean and your tools
intuitive can save years in large migrations. Do it!

Page 84 | Highlight
Finish The last phase of a migration is deprecating the legacy system that you’ve replaced. This

requires getting to 100 percent adoption, and that can be quite challenging. Start by stopping the
bleeding, which is ensuring that all newly written code uses the new approach.

Page 84 | Highlight

Okay, now you should start generating tracking tickets, and set in place a mechanism which
pushes migration status to teams that need to migrate and to the general management structure.

Page 84 | Highlight
| Your tool now is: finish it yourself. It’s not necessarily fun, but getting to 100 percent is going to

21

Page 84 | Highlight Continued klndle

| require the team leading the migration to dig into the nooks and crannies themselves.

Page 85 | Highlight

two managerial skills that have a disproportionate impact on your organization’s success: making

technical migrations cheap, and running clean reorganizations.

Page 85 | Highlight

My approach for planning organization change: Validate that organizational change is the right
tool. Project head count a year out. Set target ratio of management to individual contributors.
Identify logical teams and groups of teams. Plan staffing for the teams and groups. Commit to
moving forward. Roll out the change.

Page 86 | Highlight

There is only one worst kind of reorg: the one you do because you’re avoiding a people
management issue.

Page 87 | Highlight

| Is the problem structural?

Page 87 | Highlight

| Are you reorganizing to work around a broken relationship?

Page 87 | Highlight

| Does the problem already exist?

Page 87 | Highlight

| Are the conditions temporary?

22

Page 87 | Highlight klndle

1. An optimistic number based on what’s barely possible. 2. A number based on the “natural
size” of your organization, if every team and role was fully staffed. 3. A realistic number based on
historical hiring rates. Then merge those into a single number.

Page 88 | Highlight

If engineering managers are expected to do hands-on technical work, then their teams should
likely be three to five engineers

Page 88 | Highlight

| Otherwise, targeting five to eight engineers,

Page 88 | Highlight

| probably in the six-to-eight range.

Page 89 | Highlight
Can you write a crisp mission statement for each team? Would you personally be excited to be a

member of each of the teams, as well as to be the manager of each of those teams? Put teams
that work together (especially poorly) as close together as possible.

Page 89 | Highlight

| most poor working relationships are the by-product of information gaps,

Page 89 | Highlight
Can you define clear interfaces for each team? Can you list the areas of ownership for each

team? Have you created a gap-less map of ownership, such that each responsibility is owned by
a team?

23

Page 89 | Highlight klndle

Are there compelling candidate pitches for each of those teams? As always, are you over-
optimizing on individuals versus establishing a sensible structure?

Page 90 | Highlight

four sources of candidates to staff them: Team members who are ready to fill the roles now.
Team members who can grow into the roles in the time frame. Internal transfers from within your
company. External hires who already have the skills. That is probably an ordered list of how you
should try to fill the key roles.

Page 90 | Highlight

| Accidentally missing someone is the cardinal sin of reorganization.

Page 90 | Highlight

Are the changes meaningful net positive? Will the new structure last at least six months? What
problems did you discover during design? What will trigger the reorg after this one? Who is going
to be impacted most?

Page 91 | Highlight

Explanation of reasoning driving the reorganization. Documentation of how each person and
team will be impacted. Availability and empathy to help bleed off frustration from impacted
individuals.

Page 91 | Highlight

Discuss with heavily impacted individuals in private first. Ensure that managers and other key
individuals are prepared to explain the reasoning behind the changes. Send an email out
documenting the changes. Be available for discussion. If necessary, hold an organization all-
hands, but probably try not to. People don’t process well in large groups, and the best
discussions take place in small rooms. Double down on doing skip-level one-on-ones.

24

Page 92 | Highlight klndle

Thanks to a great deal of feedback and reflection, I’'ve gotten more deliberate at identifying where
to engage and where to hang back, a process that | call identifying your controls.

Page 92 | Highlight

Metrics26 align on outcomes while leaving flexibility around how the outcomes are achieved.
Visions27 ensure that you agree on long-term direction while preserving short-term flexibility.
Strategies28 confirm you have a shared understanding of the current constraints and how to
address them. Organization design allows you to coordinate the evolution of a wider organization
within the context of sub-organizations. Head count and transfers are the ultimate form of
prioritization, and a good forum for validating how organizational priorities align across individual
teams. Roadmaps align on problem selection and solution validation. Performance reviews

coordinate culture and recognition.

Page 93 | Highlight

| I’ll do it. Stuff that | will personally be responsible for doing.

Page 93 | Highlight

| Best used sparingly. Preview. I'd like to be involved early and often.

Page 93 | Highlight

Review. I’d like to weigh in before it gets published or fully rolled out, but we’re pretty aligned on
the topic. Notes. Projects I'd like to follow but don’t have much | can add to.

Page 93 | Highlight

No surprises. The work that we’re currently aligned on but requires updates to keep my mental
model intact.

Page 93 | Highlight

my effectiveness is evaluated based on my ability to stay on top of new problems. Let me know.
We’re well aligned on this, since my colleagues have done it before and done it well.

25

Page 93 | Highlight klndle

| established the interface between you and the folks you support.

Page 95 | Highlight
A prototypical head of engineering will be skilled at organizational design, process design,
business strategy, recruiting, mentoring, coaching, public speaking, and written communication.

They’ll also have a broad personal network and a broad foundation from product engineering to
infrastructure engineering.

Page 96 | Highlight

| Managers tend to have a strong sense of the business’s needs,

Page 97 | Highlight

Answer the question you want to be asked. If someone asks a very difficult or challenging
question, reframe it into one that you’re comfortable answering.

Page 97 | Highlight

Stay positive. Negative stories can be very compelling. They are quite risky, too! As an
interviewee, find a positive framing and stick to it.

Page 97 | Highlight

Speak in threes. Narrow your message down to three concise points, make them your refrain,
and continue to refer back to your three speaking points.

Page 98 | Highlight

| One of the trickiest, and most common, leadership scenarios is leading without authority,

Page 98 | Highlight

| Model. Start measuring your team’s health (maybe using short, monthly surveys) and your team’s

26

Page 98 | Highlight Continued klndle
throughput (do some lightweight form of task sizing, even if you just do it informally with a senior

engineer on the team or with yourself), which will allow you to establish the baseline before your
change.

Page 99 | Highlight
Document. After you’ve discovered an effective approach, document the problem you set out to

solve, the learning process you went through, and the details of how another team would adopt
the practice for themselves.

Page 99 | Highlight

Share. The final step is to share your documented approach, along with your experience doing
the rollout, in a short email.

Page 99 | Highlight

| Mandates assume: It’s better to adopt a good-enough approach quickly.

Page 100 | Highlight

Model, Document, Share assumes: It’s better to adopt a great approach slowly.

Page 100 | Highlight

As organizations grow, there is a subtle slide into inconsistency, which is often one of the most
challenging aspects of evolving from a small team into a much larger one.

Page 101 | Note

Mo >

Che @P

27

Page 101 | Highlight klndle

manage inconsistency creep.

Page 101 | Highlight
when the problem becomes truly acute, folks eventually reach for the same tool: adding a
centralized, accountable group. The two most common flavors of this I've seen are “product

reviews” to standardize product decisions and the “architecture group” to encourage consistent
technical design.

Page 101 | Highlight

Some of these groups take on an authoritative bent, becoming rigid gatekeepers, and others

become more advisory, with a focus on educating folks toward consistency.

Page 101 | Highlight

a few words on the framing that | use for reasoning about when to create a new centralized
authority.

Page 101 | Highlight
A positive freedom is the freedom to do something, for example the freedom to pick a
programming language you prefer. A negative freedom is the freedom from things happening to

you, for example the freedom not to be obligated to support additional programming languages,
even if others would greatly prefer them.

Page 102 | Highlight

Influence. How do you expect this group to influence results? Will they be an authoritative group

that makes binding decisions? Will you rely on the natural authority of the members you select?

Page 102 | Highlight

Interface. How will other teams interact with this team? Will they submit tickets, send emails,
attend a weekly review session?

28

Page 102 | Highlight klndle

Size. How large should the group be? If it's six or fewer individuals, it's possible for them to gel
into a true team, one whose members know each other well, work together closely, and shift a
significant portion of their individual identities into the team.

Page 102 | Highlight

Time commitment. How much time will members spend working in this group? Will this be their
top priority, or will they still primarily be working on other projects?

Page 102 | Highlight

my sense is that you want time commitment to be higher for areas where folks are directly
impacted by the consequences of their decisions, and to be lower for scenarios with weaker
feedback loops. Identity. Should members view their role in the group as their primary identity?

Page 103 | Highlight

Selection process. How will you select members? I've found the best method to be a structured
selection process,35 in which you identify the requirements to be a member and the skills that
you believe will be valuable, and then allow folks to apply. Membership in these groups often
becomes an important signal of organizational status, which makes having a consistent process
for selecting membership especially important. Length of term. How long will members serve?
Are these permanent assignments, or are they fixed terms for, say, six months?

Page 103 | Highlight

Representation. How representative will this group be? Will you explicitly select folks based on
their teams, tenure, or seniority, or will you allow clusters?

Page 103 | Highlight

four ways these groups consistently fail.

Page 104 | Highlight

Domineering groups significantly reduce individuals’ negative and positive freedoms, and
become
29

Page 104 | Highlight Continued k|nd|.e

churn factories for members.

Page 104 | Highlight

Bottlenecked groups tend to be very helpful, but are trying to do more than they’re actually able
to do.

Page 104 | Highlight

Status-oriented groups place more emphasis on being a member of the group than on the group’
s nominal purpose.

Page 104 | Highlight

Inert groups just don’t do much of anything. Typically, these are groups whose members have
not gelled or are too busy. On the plus

Page 105 | Highlight

Communication is company-specific. Every company has different communication styles and
patterns.

Page 105 | Highlight

Start with the conclusion. Particularly in written communication, folks skim until they get bored

and then stop reading.

Page 105 | Highlight

Frame why the topic matters. Typically, you’ll be presenting on an area that you’re intimately
familiar with, and it’s probably very obvious to you why the work matters.

Page 105 | Highlight

Everyone loves a narrative. Another aspect of framing the topic is providing a narrative of where

30

Page 105 | Highlight Continued k|nd|.e

things are, how you got here, and where you’re going now.

Page 105 | Highlight

Prepare for detours. Many forums will allow you to lead your presentation according to plan, but
that is an unreliable prediction when presenting to senior leadership.

Page 107 | Highlight

Answer directly. Senior leaders tend to be indirectly responsible for wide areas, and frequently
pierce into areas to debug problems.

Page 107 | Highlight

Deep in the data. You should be deep enough in your data that you can use it to answer
unexpected questions.

Page 107 | Highlight

Derive actions from principles. One of your aims is to provide a mental model of how you view
the topic, allowing folks to get familiar with how you make decisions.

Page 107 | Highlight

Discuss the details. Some executives test presenters by diving into the details, trying to uncover

an area the presenter is uncomfortable speaking on.

Page 107 | Highlight
Prepare a lot; practice a little. If you’re presenting to your entire company, practicing your

presentation is time well spent. Leadership presentations tend to quickly detour, so practice isn’t
quite as useful.

31

Page 107 | Highlight klndle

Make a clear ask.

Page 108 | Highlight

Tie topic to business value. One or two sentences to answer the question “Why should anyone
care?” Establish historical narrative. Two to four sentences to help folks understand how things
are going, how we got here, and what the next planned step is. Explicit ask. What are you looking
for from the audience? One or two sentences. Data-driven diagnosis. Along the lines of a strategy’
s diagnosis phase,39 explain the current constraints and context, primarily through data.

Page 108 | Highlight
Decision-making principles. Explain the principles that you’re applying against the diagnosis,

articulating the mental model you are using to make decisions. What’s next and when it’ll be
done.

Page 108 | Highlight

Return to explicit ask.

Page 109 | Highlight

Quarterly time retrospective. Every quarter, | spend a few hours categorizing my calendar from
the past three months to figure out how I’'ve invested my time.

Page 109 | Highlight

Prioritize long-term success over short-term quality.

Page 111 | Highlight

Finish small, leveraged things.

32

Page 111 | Highlight klndle

Stop doing things.

Page 111 | Highlight

it’s fine to drop things, but it’s quite bad to silently drop them. Size backward, not forward. A
good example of this is scheduling skip-levels.

Page 111 | Highlight

two hours per week.

Page 111 | Highlight

specify the number of hours you’re able to dedicate to the activity, perhaps two per week, and
perform as many skip-levels as possible within that amount of time.

Page 111 | Highlight

Delegate working “in the system.”

Page 111 | Highlight
Trust the system you build. Once you’ve built the system, at some point you have to learn to trust
it.

Page 111 | Highlight
Handling exceptions can easily consume all of your energy, and either delegating them or

designing them out of the system is essential to scaling your time. Decouple participation from
productivity.

Page 112 | Highlight

don’t fall into the trap of assuming that attendance is valuable. Hire until you are slightly ahead of
growth.

33

Page 112 | Highlight klndle

hiring capable folks, and hiring them before you get overwhelmed.

Page 112 | Highlight

Calendar blocking.

Page 112 | Highlight

add three or four two-hour blocks scattered across your week to support more focused work.

Page 112 | Highlight

Getting administrative support.

Page 112 | Highlight

I’ve always preferred learning in private.

Page 113 | Highlight

building a community of learning with your peers.

Page 113 | Highlight

Be a facilitator, not a lecturer. Folks want to learn from each other more than they want to learn
from a single presenter. Step back and facilitate. Brief presentations, long discussions.

Page 113 | Highlight

Small breakout groups.

Page 113 | Highlight

Bring learnings to the full group.

34

Page 113 | Highlight klndle

Choose topics that people already know about.

Page 116 | Highlight

Encourage tenured folks to attend. For many learning communities, you’ll find that the most
senior or most tenured folks opt out to focus on other work.

Page 116 | Highlight

Optional pre-reads.

Page 116 | Highlight

Checking in. Depending on the size of the group, it can be powerful to start by checking in with
each other, having each person give a 20- or 30-second self-introduction. The format we’ve been
using lately is your name, your team, and one sentence about what’s on your mind.

Page 119 | Highlight

You unravel most puzzles knowing they’re solvable.

Page 119 | Highlight

Work the policy, not the exceptions

Page 119 | Highlight

consistency is a precondition of fairness.

Page 119 | Highlight

“Work the policy, not the exceptions.”

35

Page 120 | Highlight klndle

Good policy is opinionated Every policy you write is a small strategy,1 built by identifying your
goals and the constraints that bring actions into alignment with those goals.

Page 120 | Highlight

Make every office a first-tier office; there are no second-tier offices.

Page 120 | Highlight

must own multiple critical projects,

Page 120 | Highlight

Ensure that remote engineers remain an essential, well-supported cohort of the company.

Page 120 | Highlight

Teams are staffed in, at most, one office.

Page 120 | Highlight

Employees in an office must be members of a team in that office. Remote employees may work
on any team. Employees within a 60 minute commute of an office must work from that office.

Page 120 | Highlight

If you find yourself writing constraints that don’t actually constrain choice, it’s useful to check if
you’re dancing around an unstated goal that’s limiting your options.

Page 121 | Highlight

I generally don’t recommend writing policies that do little to constrain behavior.

36

Page 121 | Highlight klndle

Exception debt

Page 121 | Highlight

Accepting reduced opportunity space. Good constraints make trade-offs that deliberately narrow
your opportunity space.

Page 121 | Highlight
Locally suboptimal. Satisfying global constraints inevitably leads to local inefficiency, sometimes

forcing some teams to deal with deeply challenging circumstances in order to support a broader
goal that they may experience little benefit from.

Page 122 | Highlight
Policy success is directly dependent on how we handle requests for exception. Granting

exceptions undermines people’s sense of fairness, and sets a precedent that undermines future
policy.

Page 122 | Highlight

Organizations spending significant time on exceptions are experiencing exception debt. The
escape is to stop working the exceptions, and instead work the policy.

Page 122 | Highlight

Work the policy

Page 122 | Highlight

collect every escalation as a test case for reconsidering your constraints.

Page 122 | Highlight
escalations will only be used as inputs for updated policy, not handled in a one-off fashion.

37

Page 122 | Highlight klndle

When you roll out a policy, it’s quite helpful to declare a future time when you’ll refresh it,

Page 122 | Highlight

At a sufficiently high rate of change, policy is indistinguishable from exception.

Page 123 | Highlight

Commit to refreshing the policy in a month, and batch all exceptions requests until then.

Page 123 | Highlight

Saying no

Page 123 | Highlight

This no is explaining your team’s constraints to folks outside the team, and it’s one of the most
important activities you undertake as an engineering leader.

Page 124 | Highlight

You don’t have to switch to using a kanban system, although I’'ve found it very effective for
debugging team performance, you just have to populate the board once to expose your current
constraints.

Page 124 | Highlight

you have to translate the problem into something resembling data.

Page 125 | Highlight

There are two ways to add capacity: move existing resources to the team (away from what they’
re currently doing) or create new resources (typically through hiring).

38

Page 125 | Highlight klndle

a reality-based approach

Page 125 | Highlight

expressing your priorities convincingly can be a difficult, daunting task.

Page 127 | Highlight
When | started managing, my leadership philosophy was simple: The Golden Rule6 makes a lot of
sense. Give everyone an explicit area of ownership that they are responsible for. Reward and

status should derive from finishing high-quality work. Lead from the front, and never ask anyone
to do something you wouldn’t.

Page 127 | Highlight

| believe that management, at its core, is an ethical profession.

Page 127 | Highlight

how we treat a member of the team who is not succeeding.

Page 127 | Highlight

compensation philosophy.

Page 127 | Highlight

We have such a huge impact on the people we work with—

Page 127 | Highlight

Strong relationships > any problem | believe that almost every internal problem can be traced
back to a missing or poor relationship, and that with great relationships it is possible to come
together and solve almost anything. Technical disagreements become learning opportunities for
everyone. Setbacks are now a shared experience that offers the opportunity to gel together as a

team.

39

Page 128 | Highlight klndle

debugging problems from the relationship angle,

Page 128 | Highlight

“With the right people, any process works, and with the wrong people, no process works.”

Page 128 | Highlight

Do the hard thing now

Page 128 | Highlight

Instead of avoiding the hardest parts, double down on them. If you have a poor relationship with
your manager or a member of your team, spend even more time with them.

Page 129 | Highlight

do the right thing for the company, the right thing for the team, and the right thing for yourself, in
that order.

Page 129 | Highlight

all thinking should start from a company perspective,

Page 129 | Highlight

For example, you're really excited about trying out a new programming language in a project, but
you should also make sure that you’ve considered the additional maintenance cost for the rest of
the company.

Page 129 | Highlight

make sure that your choices are being made on behalf of your team, not on your own behalf.

40

Page 129 | Highlight klndle

Last in the list is yourself, but while | do believe that you should generally put yourself last, it’s
also a reminder to “pay yourself.”

Page 129 | Highlight

interviewing, performance management, promotions, raises.

Page 130 | Highlight

programming interviews7

Page 130 | Highlight

Long bones have growth plates at their ends, which is where the growth happens, and the middle
doesn’t grow.

Page 131 | Highlight

These new problems aren’t necessarily novel (most problems are people problems),

Page 131 | Highlight

This means that you can’t expect to succeed by iterating on the status quo.

Page 131 | Highlight
execution is the primary currency in the growth plates. That’s because you typically have a

surplus of fairly obvious ideas to try, and there is constrained bandwidth for evaluating those
ideas.

Page 131 | Highlight

What folks in the growth plates need is help reducing and executing the existing backlog of
ideas, not adding more ideas that must be evaluated.

41

Page 131 | Highlight klndle

Away from the growth plates, you are mostly working on problems with known solutions. Known
solutions are amenable to iterative improvement, so it would make sense for execution to be
highly valued, but | find that, in practice, ideas —especially ideas that are new within your
company —are most highly prized.

Page 132 | Highlight

we make solid executors responsible for slower-growth areas—we need the innovators in the
highest-growth ones—but the opposite tends to work better. As a manager, this is the
environment for you to do the basics very, very well. Spend time building rich relationships,

gelling your team, working with them on career development. Build up so that when innovation or
external change pushes you off your local maxima, you and the team are ready and rested.

Page 132 | Highlight

The message I'd end with is a simple one: be thoughtful about carrying your values with you from
one context into another. Leadership is matching appropriate action to your current context, and
it’s pretty uncommon that any two situations will flourish from the same behaviors. If you’re

working in the growth plates—or outside of them —for the first time, treat it like a brand-new role.
Itis!

Page 132 | Highlight

As a new manager, | found it useful to start each performance review season by rereading! Which
also means it’s an excellent time to reread Camille Fournier’s “How Do Individual Contributors
Get Stuck?”

Page 133 | Highlight

Only manage down.

Page 133 | Highlight

Only manage up.

42

Page 133 | Highlight klndle

Never manage up. Your team’s success and recognition depend significantly on your relationship
with your management chain.

Page 133 | Highlight

Optimize locally. Picking technologies that the company can’t support, or building a product that
puts you in competition with another team. Assume that hiring never solves any problems.

Page 133 | Highlight

Don’t spend time building relationships.

Page 133 | Highlight

Define their role too narrowly.

Page 133 | Highlight

Forget that their manager is a human being.

Page 133 | Highlight

To have a good relationship with your manager, you have to give them room to make mistakes.

Page 133 | Highlight

Do what worked at their previous company.

Page 133 | Highlight

it’s important to pause to listen and foster awareness before you start “fixing” everything.

Page 134 | Highlight

Spend too much time building relationships.
43

Page 134 | Highlight klndle

Assume that more hiring can solve every problem.

Page 134 | Highlight

adding too many people can dilute your culture, and lead to people with unclear roles and
responsibilities. Abscond rather than delegate.

Page 134 | Highlight

Become disconnected from ground truth.

Page 134 | Highlight

Mistake team size for impact. Managing a larger team is not a better job, it’s a different job. It
also won’t make you important or make you happier. It’s hard to unlearn a fixation on team size,
but if you can, it’ll change your career for the better. Mistake title for impact.

Page 134 | Highlight

Confuse authority with truth. Authority lets you get away with weak arguments and poor
justifications,

Page 135 | Highlight

Don’t trust the team enough to delegate.

Page 135 | Highlight

Let other people manage their time.

Page 135 | Highlight

Only see the problems.

44

Page 136 | Highlight klndle

Success is filling in information gaps, not reciting a mantra. At some regular point, maybe
quarterly, write up a self-reflection that covers each of those aspects. (I’ve been experimenting
with a “career narrative” format that is essentially a stack of quarterly self-reflections.) Share that
with your manager, and maybe with your peers too!

Page 138 | Highlight

Broadly, there are three types of engineering management jobs: Manager: you manage a team
directly, Director: you manage a team of managers, VP: you manage an organization.

Page 138 | Highlight

As managers looking to grow ourselves, we should really be pursuing scope: not enumerating
people but taking responsibility for the success of increasingly important and complex facets of
the organization and company. This is where advancing your career can veer away from a zero-
sum competition to have the largest team and evolve into a virtuous cycle of empowering the

organization and taking on more responsibility. There is a lot less competition for hard work.

Page 139 | Highlight
If you’ve been focused on growing the size of your team as the gateway to career growth, call

bullshit on all that,13 and look for a gap in your organization or company that you can try to fill.
You’'ll be a lot happier.

Page 139 | Highlight

Scarce feedback, vague direction

Page 140 | Highlight

As a functional leader, you’ll be expected to set your own direction with little direction from
others.

Page 141 | Highlight

This first phase is discovery without judgement. You should take ideas from everywhere and

45

Page 141 | Highlight Continued k|nd|.e

generate a pile of ideas that folks are pursuing, even if you think they’re terrible.

Page 141 | Highlight

Close out, solve, or delegate

Page 144 | Highlight

For every problem that comes your way—

Page 144 | Highlight

you must pick one of three options: Close out. Close it out in a way such that this specific ask is
entirely resolved.

Page 144 | Highlight

Solve. Design a solution such that you won’t need to spend time on this particular kind of ask
again in the next six months.

Page 144 | Highlight

Delegate. Ideally, this is to redirect the ask to someone who is responsible for that kind of work,
but sometimes it is a one-off.

Page 147 | Highlight

The basis: an inclusive organization is one in which individuals have access to opportunity and
membership. Opportunity is having access to professional success and development.
Membership is participating as a version of themselves that they feel comfortable with.

Page 148 | Highlight

When | think about having access to opportunity, | think about ensuring that folks can go home
most days feeling fulfilled by challenge and growth. The most effective way to provide

opportunity
46

Page 148 | Highlight Continued klndle

to the members of your organization is through the structured application of good process.

Page 148 | Highlight

The key question is whether you’ll continue to respect your processes when it’s inconvenient to
do so.

Page 148 | Highlight

Rubrics everywhere. Every important people decision should have a rubric around how folks are
evaluated.

Page 148 | Highlight
Selecting project leaders.1 Having a structured approach to selecting project leads allows you to

learn from previous selections, and to ensure that you’re not concentrating opportunity on a small
set of individuals. Explicit budgets.

Page 148 | Highlight

Instead of saying that you’ll pay for teams to attend a reasonable number of conferences per
year, specify a fixed number.

Page 148 | Highlight
Nudge involvement. Many people are uncomfortable applying to opportunities, using education

budgets, asking for mentorship, etc. It’s very effective to reach out to those folks directly and
recommend they apply.

Page 149 | Highlight

Education programs. Create ongoing training and learning programs that are available for
everyone,

47

Page 149 | Highlight klndle

Retention is the most important measure of availability of opportunity, although it’s also a very
lagging indicator.

Page 149 | Highlight

Usage rate is how often folks get picked in project selection.

Page 149 | Highlight

Level distribution is useful, in particular comparing cohorts of folks with different backgrounds.

Page 149 | Highlight

Time at level is how long team members wait between promotions.

Page 150 | Highlight

Recurring weekly events allow coworkers to interact socially. These are held during working
hours, are open to folks from many different teams to attend, and are optional.

Page 150 | Highlight

a paper-reading group.3 Employee Resource Groups (ERGs)

Page 150 | Highlight

Team offsites once a quarter or so are a good chance to pause, reflect, and work together
differently.

Page 150 | Highlight

Coffee chats,

48

Page 150 | Highlight klndle

Team lunches

Page 150 | Highlight

Held once a week or so, they can become a pleasant ritual.

Page 151 | Highlight

Retention is once again the golden measure, and once again a long-trailing indicator. Referral
rate by cohort

Page 151 | Highlight

Attendance rates for recurring events and team lunches

Page 151 | Highlight

The quantity and completion rate of coffee chats

Page 151 | Highlight
Many activities and events don’t work well for everyone —meals can be difficult for individuals

with complex dietary restrictions, physical activities make some uncomfortable, activities after
working hours can exclude parents—

Page 152 | Highlight

I’'ve come to believe that having a wide cohort of coworkers who lead critical projects is one of
the most important signifiers of good organizational health.

Page 152 | Highlight

To increase the number of folks leading this kind of project, I've iterated into a structured process
that has worked quite well: Define the project’s scope and goals in a short document.

49

Page 152 | Highlight klndle

Announce the project to a public email list, at an all-hands, over Slack, or however your company

does persistent communication;

Page 153 | Highlight

Allow folks to apply in private. Some individuals will be uncomfortable applying in public. Make
sure that applicants don’t see who else has applied.

Page 153 | Highlight

Give at least three working days for people to apply.

Page 153 | Highlight

Nudge folks to apply who you think would be good candidates but who might not self-select.

Page 153 | Highlight

Select a project leader based on the selection criteria you specified.

Page 153 | Highlight

Sponsor the project leader by finding someone who has successfully completed a similar project
to be their advisor.

Page 153 | Highlight
Notify other individuals who applied that they were not selected. It’s extremely helpful if you
provide them feedback on why you didn’t select them. Sometimes it’s because they’ve already

done something great and you want to create room for another person to learn, and that’s a
totally reasonable thing to tell them! Kick off the project,

Page 153 | Highlight

Record the project, who was selected, and who the sponsor is into a public spreadsheet.

50

Page 154 | Highlight klndle

These dynamics can lead to teams whose camaraderie is at best a qualified non-aggression
pact, and in which collaboration is infrequent.

Page 154 | Highlight

strange tragedy that we hold ourselves accountable for building healthy, functional teams, and

yet are so rarely on them ourselves.

Page 154 | Highlight

individuals willing to disappoint the teams they managed in order to help their peers succeed.

Page 155 | Highlight

they balanced outcomes from a broad perspective that included their peers.

Page 155 | Highlight

The ingredients necessary for such a team are: Awareness of each other’s work.

Page 155 | Highlight

Evolution from character to person. When we don’t know someone well, we tend to project
intentions onto them, casting them as a character in a play they themselves are unaware exists.

Page 155 | Highlight

Spending time together

Page 155 | Highlight

strangers into people. Refereeing defection.

51

Page 155 | Highlight klndle

Avoiding zero-sum culture. Some companies foster zero-sum cultures, in which perceived
success depends on capturing scarce, metered resources, like head count.

Page 156 | Highlight

Making it explicit.

Page 156 | Highlight

you still have to explicitly discuss the idea of shifting folks’ identities away from the team

Page 156 | Highlight

treating your peers as your first team allows you to begin practicing your manager’s job, without
having to get promoted into the role first.

Page 156 | Highlight

The best learning doesn’t always come directly from your manager, and one of the most
important things a first team does is provide a community of learning.

Page 156 | Highlight
| believe that your career will be largely defined by getting lucky and the rate at which you learn. |

have no advice about luck, but to speed up learning | have two suggestions: join a rapidly
expanding company, and make your peers your first team.

Page 157 | Highlight

hiring engineering manager-of-managers

Page 157 | Highlight

Ensuring that internal candidates take part is essential to an inclusive culture. Fair consideration
doesn’t mean that we prefer internal candidates. Rather, it means that there is a structured way

for
52

Page 157 | Highlight Continued k|nd|.e

them to apply, and for us to consider them.

Page 157 | Highlight

Then comes the trickier part: evaluation.

Page 157 | Highlight

Partnership. Have they been effective partners to their peers, and to the team that they’ve
managed? Execution. Can they support the team in operational excellence? Vision. Can they
present a compelling, energizing vision of the future state of their team and its scope? Strategy.
Can they identify the necessary steps to transform the present into their vision? Spoken and
written communication. Can they convey complicated topics in both written and verbal
communication? Can they do all this while being engaging and tuning the level of detail to their
audience? Stakeholder management. Can they make others, especially executives, feel heard?
Can they make these stakeholders feel confident that they’ll address any concerns?

Page 158 | Highlight

Peer and team feedback. Collect written feedback from four or five coworkers.

Page 158 | Highlight

A 90-day plan. The applicant writes a 90-day plan of how they’d transition into the role, and what
they would focus on.

Page 158 | Highlight

Vision/strategy document. The applicant writes a combined vision/strategy document.

Page 159 | Highlight

Vision/strategy presentation. Have the applicant present their vision/strategy document to a
group of three to four peers.

53

Page 159 | Highlight klndle

Executive presentation. Have the applicant present their strategy document, one-on-one, with an
executive.

Page 159 | Highlight

use a similar format for training managers.

Page 159 | Highlight

Company culture and managing freedoms

Page 159 | Highlight

“Freedom’s just another word for nothing left to lose.” 8

Page 160 | Highlight

Positive freedom is your freedom to do: to vote, to wear the clothing you want,

Page 160 | Highlight

Negative freedom is your freedom from things: from being forced to take an impossible literacy
exam before being allowed to vote,

Page 160 | Highlight

lives. Each positive freedom we enforce strips away a negative freedom, and each negative
freedom we guarantee eliminates a corresponding positive freedom.

Page 160 | Highlight

the Paradox of Positive Liberty.11

54

Page 161 | Highlight klndle

generally follow the standard operating procedure (i.e., keep doing what you’re already doing, the
way you’re doing it), but always change exactly one thing for each new project.

Page 161 | Highlight

Kill your heroes, stop doing it harder

Page 161 | Highlight

Unless your problem is that people aren’t trying hard, the “work harder” mantra only breeds hero
programmers whose heroic ways make it difficult for nonheroes to contribute meaningfully.

Page 161 | Highlight

You’ve bred a cadre of dissatisfied and burned-out heroes. You and your heroes have alienated
everyone else. Your project is still totally screwed.

Page 163 | Highlight
One of the observations from systems thinking16 is that, though humans are prone to interpreting

events as causal, often problems are better described in terms of a series of stockpiles that grow
and shrink based on incoming and outgoing flows.

Page 166 | Highlight

Your options for addressing a broken system depend on whether you’re in a position to set policy.

Page 166 | Highlight

Kill your heroes and stop doing it harder. Don’t trap yourself in your mistakes, learn from them
and move forward.

Page 169 | Highlight
Luck plays such an extraordinary role in each individual’s career progression that sometimes the

55

Page 169 | Highlight Continued klndle

entire concept of career planning seems dubious. However, as managers, we have an outsize
influence in reducing the role of luck in the careers of others.

Page 169 | Highlight

creating fair and effective processes for interviewing, promoting, and growing the folks we work
with.

Page 169 | Highlight

Roles over rocket ships, and why hypergrowth is a weak predictor of personal growth

Page 170 | Highlight
The good news is that both the stable eras and the transitions are great opportunities for growing
yourself. Transitions are opportunities to raise the floor by building competency in new skills, and

in stable periods you can raise the ceiling by developing mastery in the skills that the new era
values.

Page 171 | Highlight

don’t treat growth as a foregone conclusion. Growth only comes from change, and that is
something you can influence.

Page 171 | Highlight

Running a humane interview process

Page 171 | Highlight

a prepared presentation on a technical topic instead of an impromptu presentation (this more
closely replicates a real work task),

56

Page 171 | Highlight klndle

collaborative pair programming on a laptop with your editor of choice.

Page 172 | Highlight

with enough dedicated sourcers, any process will hit your hiring goals—then it can be hard to
prioritize improving your process).

Page 172 | Highlight

while interviewing well is far from easy, it is fairly simple. Be kind to the candidate. Ensure that all
interviewers agree on the role’s requirements. Understand the signal your interview is checking
for (and how to search that signal out). Come to your interview prepared to interview. Deliberately
express interest in candidates. Create feedback loops for interviewers and the loop’s designer.
Instrument and optimize as you would any conversion funnel.

Page 172 | Highlight

Start from being nice and slowly work your way through to the analytics.

Page 172 | Highlight

When an interview runs overtime before you get to the candidate’s questions, the kind thing to do
is to allow the candidate a few minutes to ask questions, instead of running on to the next
interview to catch up.

Page 173 | Highlight

you can’t conduct a kind, candidate-centric interview process if your interviewers are tightly time-
constrained.

Page 173 | Highlight

give them an interview sabbatical for a month or two,

57

Page 173 | Highlight klndle

strong relationship with open communication between engineering managers and recruiters is
important.

Page 173 | Highlight

reinforcing expectations during every candidate debrief in order to ensure interviewers are

“calibrated.”

Page 173 | Highlight

agreeing on the expected skills for a given role can be far harder than anyone anticipates,

58

