
Building Security in
Editors: Brian Chess, bchess@vantuyl.com | Brad Arkin, barkin@adobe.com

82 September/October 2012 Copublished by the IEEE Computer and Reliability Societies 1540-7993/12/$31.00 © 2012 IEEE

Integrating User
Customization and
Authentication:
The Identity Crisis

Željko Obrenović and Bart den Haak | Backbase

W eb applications, such
as iGoogle, My Yahoo,

or services based on the emerg-
ing user-experience-management
platforms,1 are increasingly more
 personalized, giving users the
power to tailor Web applications to
their needs. User customization is
often tightly coupled with security.
It usually requires authentication
because personalized applications
must be able to uniquely identify
users. It also requires securely stor-
ing users’ personal data.2 Even if
customization data don’t contain
sensitive information (for example,
customization might be limited to
data about color, layout, and page
element positions), connecting
user identities obtained from the
authentication provider to these
settings poses security challenges.

On the basis of our experiences
in integrating advanced user cus-
tomization mechanisms with exist-
ing security infrastructures, we’ve
identified four integration patterns
(see Figure 1):

 ■ the local-user pattern,
 ■ the external-user pattern,
 ■ the local- + external-user pattern,

and
 ■ the masked-external-user pattern.

Personalization is also possible
without authentication and with-
out server-side persistence of user
preferences, using anonymous-user
customization approaches. For
example, many websites encode user
preferences in a cookie sent back to
the browser. The next time the user
accesses a page, the server receives
the cookie with the preferences and
can personalize the page according
to these preferences. In this article,
however, we don’t address such
forms of personalization but focus
on situations requiring long-term
and cross-device persistence of
application-specific user customiza-
tion on the server side.

The Local-User Pattern
This pattern is the simplest way
to combine customization and

authentication. The application
maintains an internal database with
data about users and their settings.
The database is used for both cus-
tomization and authentication (see
Figure 1a).

In the Web’s early days, this
was the de facto standard for Web
applications. Also, this pattern is
relatively simple and convenient for
development and testing because
there’s no need to connect to exter-
nal systems. However, this pattern’s
popularity is declining. As users
interact with an increasing number
of applications, many of them find
managing credentials for all the sites
difficult and are reluctant to create
new accounts. Some users adopt
flawed strategies to deal with this
information overload, such as using
the same password for all sites,
using easily memorized passwords,
or writing down their passwords
and storing them in easily discov-
ered places.3

Another drawback is that many
implementations of this pattern
store user credentials in the same
database as user public informa-
tion and customization preferences.
This complicates maintenance and
backup because it requires extra care
to protect user credentials in the
database and the backup storage. It
also increases the risk of accidentally
revealing usernames and passwords.4

The External-User Pattern
This pattern delegates user authen-
tication to external applications.
It defines and manages users apart
from the application that employs
user customization (see Figure 1b).
External authentication provid-
ers, such as LDAP (Lightweight

Directory Access Protocol) or pre-
authentication servers, authenticate
users. The application uses returned
user identifiers (such as usernames)
as keys for storing and retrieving
customized data.

This pattern’s main advantage
is that it stores user credentials in a
secure external environment, not
with the user customization data.
Also, users can use the same authen-
tication provider to authenticate
with different applications. This pat-
tern makes sense only in situations in
which authentication providers are
trusted or under your control, such
as on your company’s LDAP server.

The Local- + External-
User Pattern
The local-user and external-user pat-
terns are often combined. In the
resulting pattern, users have a local
account but can connect multiple
external authentication providers
to that account (see Figure 1c). The
local account’s user identifier stores
the user customization data. After the
connection with the external auth-
entication providers is established,
users can authenticate using both the
local account and those authentica-
tion providers, in all cases accessing
the same customization data.

This pattern has become com-
mon with the increased popularity
of OpenID (http://openid.net) and
OAuth (http://oauth.net). OpenID
is a distributed-identity system that
lets people use a single username
and password to log in and authen-
ticate themselves at any OpenID-
compliant website. Google, Yahoo,
and many other providers use it.
OAuth is an authorization protocol
based on a token-based mechanism
that allows third-party websites or
applications to access users’ data
without the users needing to share
login credentials. Facebook and
Twitter use it. Although OpenID and
OAuth differ, they both can serve as
external authentication providers.5

Users don’t have to explicitly

create the local account. The sys-
tem might implicitly create such
an account when users first sign in
with external providers. Authen-
tication through local accounts is
optional and can be disabled, and
local-user credentials can be lim-
ited to only a unique user identifier.
This approach can solve the local-
user pattern’s main problem—that
it stores user credentials in the same
place as user public data and cus-
tomization settings.

Various user interface design
approaches can help simplify manage-
ment of local accounts and external
authentication providers’ links. For
example, local accounts’ creation can
be hidden from users. Users simply
“sign up” for new applications using

a Facebook account or an OpenID
provider. The applications then cre-
ate local accounts in the background
and automatically connect them to
the original sign-up providers, often
populating the local accounts with
data from those providers.

This approach is flexible and
user friendly. Users can choose how
to authenticate, reusing their exist-
ing accounts. Users can be given
a choice of provider they’d like
to authenticate with, in all cases
accessing the same customization
data. Users also can choose not
to reveal their external identities;
that is, they can use only the local
account. This pattern also gives
more control to website adminis-
trators because they can control user

Figure 1. Four patterns for integrating user customization with user authentication. (a) The local-user
pattern stores user customization profiles and user credentials in the personalization database. (b)
The external-user pattern stores user preferences in a preferences database and stores user credentials
in the external authentication provider’s database. (c) The local- + external-user pattern always
associates user profiles with local user accounts, but profiles can be optionally connected to one or
more external authentication providers. (d) The masked-external-user pattern stores user identifiers
with customized user profiles in a protected form.

(a)
User customization

User credentials

(b)

User profileUser profile

User customization

User authentication ID

External authentication
provider

External provider
user properties

User credentials

(c)

User profile

User customization

External
authentication provider

External provider
user properties

External user credentialsLocal user credentials
User authentication

ID mapper

(d)

User profile

User customization

External
authentication provider

External provider
user properties

User credentialsMasked authentication ID Identity protector

www.computer.org/security 83

account creation and can deploy an
additional approval step.

Relying on external providers
poses several risks. For instance,
some external authorities might not
work for periods of time; such prob-
lems will prevent users from access-
ing sites.

Another challenge is the in-
creasing use of social networking
sites as authentication providers.5
One potential problem is phishing
attacks. For example, the Ramnit
worm recently received attention
in the news for stealing thousands
of login and password details for
Facebook users.6 With stolen Face-
book credentials, attackers can log
on to not only Facebook but also
sites where users have enabled
Facebook authentication.

Another problem is that many
social networking sites use OAuth,
through which applications also
gain access to the OAuth site’s API.
Potential application vulnerabilities
might give malicious code access
to additional information about
users or even perform actions on
users’ behalf, such as sending mes-
sages. For example, when someone

authenticates as a Twitter user, he
or she can do almost everything
the Twitter API provides, includ-
ing updating the user profile and
posting messages. Facebook is
potentially more restrictive, and
authenticating applications can be
granted access to a subset of API
functionality. However, even if sites
give more granularity, developers
should ask for only minimal access
rights. But many developers end up
asking for more rights than their
applications actually need.

As users log on to more and more
websites using their social network
credentials, they’re becoming less
critical and are routinely approving
all access requests from applications.
Google provides an interesting solu-
tion for this problem; it combines
OpenID and OAuth. Developers
can use OpenID without OAuth for
authentication and combine it with
OAuth if they want access to Google
APIs. Generally, we recommend
using OpenID over OAuth because
OpenID is a pure authentication
provider, whereas OAuth always
comes with some authorization.
However, if you want to get more

users to your site, you might not
have such a choice because many
popular social authentication pro-
viders are using OAuth only. When
using OAuth, if your primary goal is
authentication, you must study the
site’s API carefully and ask as little as
possible of the permission.

Another potential problem with
this pattern is that, to simplify login
and attract more users, some sites
offer dozens of authentication pro-
viders but hide that those providers
use different protocols and stan-
dards. For example, StackOverflow
offers 14 external login options (see
Figure 2). Although you might use
these options in the same way, they
use different standards: OpenID,
OAuth 1.0 Rev. A (http://tools.ietf.
org/html/rfc5849), and OAuth 2.0
(http://oauth.net/2). Each stan-
dard and its implementation have
their own characteristics and risks.7
Having multiple authentication pro-
viders increases the risks because
more (potentially compromised)
access routes to the application exist.

Although adding multiple
authentication providers might
improve the user experience, it could
present usability problems. For
example, users who have accounts
on multiple social sites might acci-
dentally create several unconnected
accounts. This can happen when
users come back to a site that they’ve
used before but that no longer rec-
ognizes them (the cookie expired or
was deleted). The site will present
users the same choices it did before.
However, if they can’t remember
which authority they used and they
choose a different one, it won’t rec-
ognize them as returning users and
will create new accounts.

The Masked-External-
User Pattern
One problem with the previous pat-
terns is that the unique user identifiers
must be stored in the customization
database to enable you to retrieve
and store customized data based on

Figure 2. The StackOverflow login page. StackOverflow offers 14 ways to log in via external
authentication providers.

84 IEEE Security & Privacy September/October 2012

Building Security in

authenticated users. In some situa-
tions, such as banking applications,
the identifiers might themselves be
sensitive information, such as bank
account numbers, Social Security
numbers, or private email addresses.8

What further complicates secure
implementation of user customiza-
tion in these situations is that many
applications add personalization
as a separate layer atop the existing
system. This layer often has its own
storage and might run on a different
server with different security set-
tings than other parts of the system.
So, managing and storing sensitive
information in this layer requires
care. The key challenge, thus, is how
to uniquely identify users and store
their customization without stor-
ing sensitive information in the cus-
tomization database.

Some external authentication
providers can themselves mask
users’ identities. Some OpenID pro-
viders have this ability in the form
of claimed identifiers that might be
opaque.9 Different OpenID provid-
ers employ different implementa-
tions of claimed identifiers. Some
providers return different identifiers
for each relying party so that user
accounts can’t be correlated across
sites. Other providers, such as Yahoo,
enable users to have several identi-
fiers for the same account and to
choose which to use when logging
on to a website. However, the latter
approach puts the responsibility on
users to create and use opaque iden-
tifiers rather than identifiers that are
easier to remember but might con-
tain sensitive information.

If authentication providers can’t
mask users’ identity, a mechanism
that masks sensitive user identifi-
ers with new, safer user identifiers
is necessary (see Figure 1d). Two
approaches to such masking exist:

 ■ Instead of storing user identifiers
directly, use encrypted user iden-
tifiers as safe identifiers for the
customization system.

 ■ Use a separate service to map sen-
sitive user identifiers to secure
user identifiers. The application
then can exchange the sensitive
user identifiers for the secure user
identifiers, and use only the latter.
This is similar to token exchange
in OAuth or Central Authenti-
cation Service systems, but this
exchange shouldn’t be limited to a
current session.

Masking’s main advantage is
that it doesn’t store sensitive user
information with less sensitive cus-
tomization settings. This minimizes
the possibility of revealing user
identities and other sensitive infor-
mation if the customization data-
base is compromised.

Masking adds a layer of complex-
ity and might require infrastructure
changes. The masked-external-user
pattern isn’t common, and few prac-
tical resources outline its potential
problems. Encrypting user identifi-
ers requires an encryption module,
and maintaining and configuring
that module require additional care.
If you use a service to exchange
sensitive user identifiers for secure
ones, this service must have its own
database that stores the mapping
between the identities. Such a data-
base introduces additional over-
head and risks.

M any people have come to
expect user customization,

but creating good designs isn’t triv-
ial. Even simple things, such as con-
necting user identities to noncritical
preferences, pose challenges. The
patterns we presented are relevant
not only for personalization but also
for any situation that requires map-
ping user identities to application-
specific data.

References
1. G. Phifer, The Emerging User

Experience Platform, tech. report
G00211625, Gartner, 2011; www.

gartner.com/id=1610217.
2. A. Rezgui, A. Bouguettaya, and

M.Y. Eltoweissy, “Privacy on the
Web: Facts, Challenges, and Solu-
tions,” IEEE Security & Privacy,
Nov./Dec. 2003, pp. 40–49.

3. D.A. Norman, “When Security
Gets in the Way,” ACM Interactions,
vol. 16, no. 6, 2009, pp. 60–63.

4. M. Dembowski, “How to NOT
Store User Credentials in a Data-
base,” blog, 1 Oct. 2012; http://
blog.goyello.com/2012/01/10/
not-store-user-credentials-database.

5. M.N. Ko et al., “Social-Networks
Connect Services,” Computer, Aug.
2010, pp. 37–43.

6. J. Kirk, “Ramnit Worm Goes after
Facebook Credentials,” Computer-
world, 5 Jan. 2012; www.computer
world.com/s/article/9223173/
R a m n i t _ w o r m _ g o e s _ a f t e r
_Facebook_credentials.

7. R. Wang, S. Chen, and X. Wang,
“Signing Me onto Your Accounts
through Facebook and Google: A
Traffic-Guided Security Study of
Commercially Deployed Single-
Sign-On Web Services,” Proc. 2012
IEEE Symp. Security and Privacy,
IEEE, 2012, pp. 365–379.

8. V. Moen and T. Tjøstheim, “Case
Study: Online Banking Security,”
IEEE Security & Privacy, Mar./Apr.
2006, pp. 14–20.

9. “Authentication Best Practices—
Claimed Identifiers vs. Email
Addresses,” Google; https://
developers.google.com/google
-apps/marketplace/best_practices
#claimed.

Željko Obrenović is a researcher and
best-practices evangelist at Back-
base. Contact him at obren@acm.
org; http://obren.info.

Bart den Haak is an IT architect at
Backbase. Contact him at bart.
denhaak@softsens.com.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

www.computer.org/security 85

