
Rethinking HCI Education:
Teaching Interactive Computing
Concepts Based on the
Experiential Learning Paradigm

Željko Obrenović
Backbase | obren@acm.org

computing concepts compatible
with the practice-oriented educa-
tional models used in design and
craft schools. Figure 1 provides an
illustration of our approach. This
example shows an exploration of
an “intelligent window” concept,
where the visibility of the win-
dow is changed by “cleaning” it
with a hand gesture. Through this
example, we want to illustrate sev-
eral innovations we have started to
introduce in the education of inter-
action designers:

• The student explores a simpli-
fied version of a complex computing
component, in this case a camera-
based motion detector, directly expe-
riencing its possibilities and limita-
tions without needing to know its
technical details.

• The exploration and under-
standing of technology happens in
action, in the context that is mean-
ingful for students, directly related
to the problem they are dealing
with (the “intelligent window” con-
cept), and connected with familiar
tools, such as sketching tools and
graphical editors.

• The exploration is more holistic,
enabling the student to reflect on

rent tools, however, students gener-
ally cannot develop a sufficiently
good understanding of the capa-
bilities of computing technologies
unless they, themselves, are very
skilled programmers or developers.
In practice many students do not
succeed in mastering the syntax of
programming. Computing concepts
are often introduced with activities
(such as generating lists of prime
numbers and making simple line
drawings) that are not connected to
students’ interests or experiences.
Additionally, such approaches do
not recognize that two radically dif-
ferent education models need to be
bridged. Design and craft schools
generally follow the experiential
learning paradigm, in which knowl-
edge is acquired mainly through
doing and working on practical
projects [1]. Computer science edu-
cation, on the other hand, has its
roots in mathematics, often empha-
sizing formal methods and models,
articulation of general principles,
and a top-down approach to prob-
lem solving.

Here we discuss our experi-
ences applying a new educational
framework for teaching advanced

Interactive computing technolo-
gies such as sensors, actuators,
and interactive graphical displays
have become increasingly com-
mon in cars, household equipment,
and other consumer products.
As such, industrial and product
design professionals, traditionally
concerned with the physical form
and material properties of prod-
ucts, must now take into account
issues related to these interactive
technologies. These designers need
to understand the possibilities and
limitations of computing technolo-
gies at a sufficient level to be able
to engage in a constructive discus-
sion with computing professionals
and to be able to create feasible
concept proposals for products that
use this technology.

Many design schools have begun
to introduce courses on computa-
tion to prepare students for these
new challenges. These approaches
are usually based on adapting and
simplifying courses developed in
computer science schools, such
as teaching students the basics of
programming, or introducing the
general principles of a particular
computing technology. With cur-in

te
ra

c
ti

o
n

s  

M
a

y
+

 J
u

n
e

 2
0

1
2

66

feature

share the following elements [6]:
• actions that create an experi-

ence,
• reflections on the action and

experience,
• abstractions drawn from the

reflections, and
• application of abstractions to a

new experience.
Particularly relevant for our

work is the experiential learn-
ing model developed by Donald
Schön. It is one of the most
influential and widely accepted
models in design- and practice-
oriented schools [1]. This model,
sometimes also called “reflective
practice,” stresses the dynamic,
cyclic, and reflective nature of
design, in which practitioners
approach the solution in cycles.
In each cycle they interactively
frame the problem, generate moves
toward a solution, and reflect on
the outcomes of these moves.

The Framework
We have begun to develop a
framework for teaching advanced
computing concepts based on the
experiential learning paradigm.

the relations among user issues,
technological possibilities, and
overall dynamics of the interaction.

• Even without providing detailed
understanding, such experiences
can pinpoint the limitations of a
technology, such as the need for a
clear visual field between the sen-
sor and a user’s hands, the influ-
ence of lighting on the performance
of the sensor, the delay caused by
the processing of data, and some
indirect consequences, such as the
user fatigue when the interaction is
prolonged. In early phases, this can
lead the student to create solutions
that overcome these limitations,
such as clever positioning of the
sensors, adding lighting elements,
and making the interaction sessions
short enough to avoid user fatigue.

In our educational framework,
this direct experience of exploring
computing technologies is a start-
ing point of the learning process,
enabling students to come up with
an understanding of computation
by reflecting on their experiences.

Background
Experiential learning is a guided
process of questioning, investigat-
ing, reflecting, and conceptualizing
based on direct experiences. In
this learning process, the learner
is actively engaged, has freedom to
choose, and directly experiences
the consequences of their actions.
There are several models of the
experiential learning process,
including Kolb’s cyclical learn-
ing process [2], Schön’s reflective
practice model [1], Joplin’s action-
reflection cycle [3], Kesselheim’s
learning process [4], and Dewey’s
three-stage process of learning
[5]. Though there are differences
among these models, the nature of
experiential learning is fairly well
understood and agreed upon, and
all experiential learning models

With our framework we wanted to
enable industrial design students
to experience the design of systems
that employ advanced computing
technologies, such as speech- and
camera-based sensors, or Web ser-
vices, and to learn from that experi-
ence. More specifically, we had the
following goals:

• To empower students to explore
computing technologies without
intensive programming. Most of
our students are not programmers,
and creating systems that employ
advanced computing technology
using conventional programming
languages is beyond their reach.

• To increase students’ awareness
of the possibilities, limitations,
and complexity of computing sys-
tems. Many of our students are
not aware of the availability and
opportunities of emerging comput-
ing technologies, and they often
have unrealistic expectations about
technologies and their complexity.

Having in mind these goals and
the discussion about the previous
work, we adopted several guiding
principles for development of our
framework:

• �Figure 1. In this
example a trans-
parency of a
window changes
in response to the
estimated intensity
of hand motion. A
motion detector is
used to control the
transparency of the
image representing
the window.

in
te

ra
c

ti
o

n
s  

M

a
y

+
 J

u
n

e
 2

0
1

2

67

feature

• a collection of software tools to
empower students to explore the
limitations and opportunities of
technologies without intensive pro-
gramming, and

• tools and spaces for creating the
contexts for such experiences.

Existing approaches to teaching
computing concepts do not usu-
ally allow exploration of advanced
computing technologies unless
a student is willing to become a
skilled programmer and learn a
significant amount of technological
detail. Our goal was to facilitate
creating learning experiences,
as described in our introduc-
tory example, without requiring
students to program or to obtain
detailed technical knowledge.

The main software tool for our
educational activities was the
Sketchify toolkit (http://sketchify.
sf.net). This software toolkit helps
non-programmers build systems
with complex computing technolo-
gies; it served as the basis for sup-
porting the experiential learning in
our courses. In this way, we could
bring components from various
domains within students’ reach,
allowing them to directly experi-
ence possibilities and limitations
of technologies without needing
advanced programming skills.
Sketchify enables students to com-
bine these technology samples with
drawing tools and simple end-user
programming techniques, such as
spreadsheets. We have incorpo-
rated many samples of comput-
ing technologies within Sketchify,
including text-to-speech engines
and speech recognizers, Web ser-
vices (such as the Google search
engine), Phidgets, Arduino, seman-
tic services (such as the Wordnet
definition service), camera-based
face and motion detectors, MP3
and MIDI players, Wii Remote, a
Car Simulator, and many others. (A

• We follow the general phi-
losophy behind experiential-based
learning: When what we experi-
ence differs from the expected or
intended, disequilibrium results
and our adaptive (learning) process
is triggered. Reflection on success-
ful adaptive operations (reflective
abstracting) leads to new or modi-
fied concepts. The challenge is to
create learning environments that
are complex enough to lead to
unexpected experiences, but not
too complex to be inaccessible to
students.

• Unguided or minimally guided expe-
rience and reflection is not effective [7].
We must provide a structure and a
set of plans that support the devel-
opment of informed exploration
and reflective inquiry without tak-
ing initiative or control away from
students.

• We need to create a personally
meaningful context for students. For
a problem to foster the learning of
powerful computing ideas, the stu-
dents must accept it as their prob-
lem. We need to take noncontextu-
alized computing ideas and embed
them in a meaningful context for
student investigation.

Our framework supports these
principles with a collection of soft-
ware tools, conceptual frameworks,
and guidelines, which we classify
into two groups (Figure 2):

• tools that facilitate the creation
of useful experiences for exploring
advanced computing technology, and

• tools that guide and support reflec-
tion on such experiences.

Creating experience. The key ele-
ment of our approach is empow-
ering students to have relevant
experiences with advanced com-
putational technologies, because
without such experiences, the stu-
dents do not have a basis to reflect
and learn. To support this goal, our
framework includes:

detailed description of the tool is
available in [8]).

In addition to using and develop-
ing software tools that can enable
students of diverse backgrounds
to explore advanced computing
technology, we have been work-
ing on creating contexts for such
experiences. Sketchify focuses on
enabling students to exploit the
computing technologies available
in their environment by allowing
them to use everyday comput-
ing objects and artifacts, such as
their mobile phones, game devices,
cameras, or microphones. We
developed a number of Sketchify
adapters for these objects.

We are also working on creating
spaces with specialized equipment
and a more stimulating atmosphere.
One such space is the ConceptLab,
a studio that reflects our vision of
what a design studio of the future
could look like.

Guiding experience. With the tools
described earlier, we can empower
students to engage in useful learn-
ing experiences. In reference to our
second general principle, which
states that unguided experience is
not effective, we also developed sev-
eral conceptual tools that can help
educators guide and structure stu-
dents’ experience and reflection.

In all of our educational activi-
ties, we asked students to keep a
creative logbook in which to write
down what they had learned and to
reflect on the techniques they were
using. We also encouraged public
discussions, not as mere presenta-
tion activities, but as an opportuni-
ty to reflect on the experience and
learn something new.

To help guide students reflect
on discussions, presentations,
and notes, we provided several
structured frameworks. The main
purpose of these frameworks is
to give students a structure to in

te
ra

c
ti

o
n

s  

M
a

y
+

 J
u

n
e

 2
0

1
2

68

feature

reflect on their experiences and
to provide them with a shared
vocabulary they can use to criti-
cally review each other’s work. A
systematic analysis and reflection
on concrete systems can reveal
potential problems and inspire
new features. Frameworks for
reflection also provide a way to
introduce and give meaning to
computing concepts. For example,
in courses related to the design
of interactive systems, we used
an adaptation of the framework
for modeling human-computer
interaction in terms of interac-
tion constraints [9]. This model
is presented in Figure 3. The idea
behind this modeling framework
is that an interactive system could
be described in terms of require-
ments that it imposes on users,
such as usage of the visual field or
audio perception. This description
is discussed in terms of potential
constraints that may influence
the interaction, such as device
limitations, user (dis)abilities, and
the environmental influence.

Another important component
of our framework is experience
constraints. While we stimulate
students to work on their own
problems and set their own goals,
when working in groups we found
it useful to give a direction to
students’ activities. Rather than
setting a concrete goal, experi-
ence constraints are aimed at
giving the “mood” to the whole
educational setting and activi-
ties. Experience constraints thus
serve two roles (Figure 4):

• constrain student explora-
tions, providing inspiration,
giving direction, and focus-
ing students’ activities; and

• provide a unified theme for stu-
dent actions and projects, in order
to facilitate communication among
students.

• Figure 3. an example of reflection about interaction through interaction constraints. Presenting
information through image modality is limited by screen size and users’ color disability. Speech
may not be perceived in very noisy environments. Using vibrations, such as on a mobile phone,
is not affected by the device screen size, environmental noise, or user color blindness, although
it has limited information bandwidth.

Device
constraint

(small screen size)Computer Human

Environmental
constraint

(loud noise)

User
constraint

(color blindness)

Visual
perception

Speech
perception

Haptic
perception

X

Modality
(image)

Modality
(speech)

Modality
(vibrations)

Framework for teaching
advanced computational

concepts based on experiental
learning paradigm

Tools
for refl ection

Themes and
experience constraints

New Spaces – a studio
based paradigm

Empowering existing
contexts

Simplifi ed animation and
visual programming

Simplifi ed
software/hardware

components and services

creating experience

guiding experience

Constraining ExperienceRefl ection Support

Sketchify

Creating ContextSoftware Tools

• Figure 2. The framework for experiential learning of computing concepts, consisting of tools
that facilitate creation of useful experiences and tools that guide and support reflection on such
experiences.

provide a common theme
for a group of students

guiding and constraining individual student work

teachers’ initiative

students’ initiative

• Figure 4. The role of experience constraints in our framework. in
te

ra
c

ti
o

n
s

M

a
y

+
 j

u
n

e
 2

0
1

2

69

FeaTure

Conclusion
Our framework has been devel-
oped and applied during a period
of three years at the Department of
Industrial Design at the Eindhoven
University of Technology. We used it
in three iterations of the undergrad-
uate course “Sketching Interactive
Systems” and three iterations of the
postgraduate course “Multimodal
Interaction.” The first results are
encouraging, and although it’s still
too early to make more specific
claims, our initial findings suggest
the following:

• The key element of our
approach was to empower students
to have relevant experiences with
advanced computational technolo-
gies. Without such experience, the
students do not have a basis to
reflect and learn. This was a par-
ticularly successful element in the
usage of our framework, especially
in undergraduate education.

• Our tools enabled students
to discover and learn a range of
important properties of current
computing technologies, as well
as some basic computing abstrac-
tions, such as variables. Though
such experience has its limits and
cannot enable students to discover
all relevant concepts, it provides a
productive context to discuss such
concepts and increases the general
interest of students.

• Providing a structure and a
set of plans that support informed
exploration and reflective inquiry
was crucial to enabling students
to learn from their experience and
from each other. Simply letting stu-
dents explore computing technology
and build computational systems
will not necessarily help them learn
computing concepts.

• Having themes and constraining
students’ experiences had a positive
effect on the conceptual integrity
of our educational activities and on

We used various themes and
metaphors to provide experi-
ence constraints. For example,
in our master’s course on mul-
timodal interaction we used the
“Power Trio” theme to inspire
and unify students’ activities.
In our undergraduate course
“Sketching Interactive Systems”
we used the theme of sketch-
ing to encourage them to explore
more diverse technologies.

Our experience constraints have
a role similar to that of a primary
generator in design used to “narrow
down the space of possible solutions
by providing an initial focus, i.e., by
constraining and guiding the design-
er’s development of a solution” [10].

student collaboration. However, the
theme has to be introduced care-
fully and clearly to avoid confusion
among students about its role.

Our initial results are encourag-
ing, but more studies are neces-
sary to get deeper insights into the
learning process of students and to
develop an empirically grounded
theory of how interventions based
on experiential learning of comput-
ing concepts work.

EndNotes:

1. Schön, D.A. The Reflective Practitioner. Basic
Books, New York, 1983.

2. Kolb, D.A. Experiential Learning: Experience as
the Source of Learning and Development. Prentice
Hall, New Jersey, 1984.

3. Joplin, L. On defining experiential education.
Journal of Experiential Education 4, 1 (1981), 17-20.

4. Kesselheim, A.D. A rationale for outdoor activity
as experiential education: The reason for freezing.
Proc. 1st North American Conference on Outdoor
Pursuits in Higher Education (Boone, NC). 1974,
18-22.

5. Dewey, J. Experience and Education. Simon and
Schuster, New York, 1938/1997.

6. Stehno, J.J. The application and integration
of experiential education in higher education.
Touch of Nature Environmental Center, Southern
Illinois University, Carbondale, IL, 1986; (Eric Doc.
Reproduction Service No ED-285-465).

7. Kirschner, P.A., Sweller, J., and Clark, R.E. Why
minimal guidance during instruction does not
work: An analysis of the failure of constructiv-
ist, discovery, problem-based, experiential, and
inquiry-based teaching. Educational Psychologist
41, 2 (2006), 75-86.

8. Obrenovic, Ž. and Martens, J.B. Sketching inter-
active systems with Sketchify, ACM Transactions
on Computer Human Interaction 18, 1 (March 2011),
Article 4.

9. Obrenovic, Ž., Starcevic, D. and Abascal, J.
Universal accessibility as a multimodal design
issue. Commun. ACM 50, 5 (May 2007), 83-88.

10. Lawson, B. How Designers Think: The Design
Process Demystified (4th ed.). Architectural Press,
2005.

About the Author 
Željko Obrenović (obren.info) is a
best-practices evangelist at
Backbase, Amsterdam. He con-
ducted the work reported here
while working as an assistant pro-
fessor in the Department of

Industrial Design at the Eindhoven University of
Technology. His professional interests include
design of interactive systems, end-user develop-
ment, rapid prototyping, creativity support tools,
software engineering, and universal accessibility.

DOI: 10.1145/2168931.2168945
© 2012 ACM 1072-5220/12/05 $10.00

Existing approaches

to teaching

computing concepts

do not usually allow

exploration of

advanced computing

technologies unless

a student is willing

to become a

skilled programmer

and learn a

significant amount

of technological

detail.

in
te

ra
c

ti
o

n
s  

M

a
y

+
 J

u
n

e
 2

0
1

2

70

feature

