
0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E JULY/AUGUST 2017 | IEEE SOFTWARE 71

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

THE IEEE SOFTWARE history website
(obren.info/ieeesw) is a curated site com-
plementing the official IEEE Software
website (www.computer.org/software).
It offers a look at IEEE Software’s his-
tory at a glance. Here, I discuss its gen-
esis, how it illustrates the practical value
of historical data, and how it offers a
glimpse into the magazine’s future.

The Website’s Genesis
The website has developed organically.
There never was an official project to
develop an elaborate overview of the
magazine’s history. Rather, the website
evolved somewhat out of curiosity and
as a volunteer initiative, partly in reac-
tion to positive feedback about its devel-
oping content.

The idea for the website arose during
the 2016 IEEE Software editorial-board
meeting at the Software Improvement

Group (SIG) in Amsterdam. As an orga-
nizer of the meeting, I was looking for
ways to create an IEEE Software atmo-
sphere. I decided to print the magazine
covers and put them up as wallpaper (see
Figure 1).

The board members, who were from
both academia and industry, liked such
an overview of topics and trends that
were once considered important. For
many, it brought back memories or cre-
ated awareness of missed topics. In addi-
tion, the covers are attractive. SIG kept
them on the wall for several months af-
ter the meeting.

After receiving requests to share digi-
tal versions of the covers, I created a
simple website to display them. Thus,
the original idea of the history website
was only to create that display.

While collecting the covers, I discov-
ered that the July/August 2017 issue would

Insights from the Past
The IEEE Software History Experiment

Željko Obrenović

With now 200 issues, IEEE Software has been making software
engineering history since 1984. Advisory board member Željko
Obrenović discovered this anniversary during his archeological
expedition through the magazine archives. Starting from the
surface (by collecting the magazine’s covers), he then went deeper
to gather insightful quotes, bibliometrics, and topic trends. So,
we invited him to share his reflections on the past so that it might
not be reinvented but become a source of inspiration for the
present and future. —Cesare Pautasso and Olaf Zimmermann

INSIGHTS

72 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

be the 200th issue. So, I decided to
use the history website to celebrate
this anniversary. I extended the web-
site with several types of content, in-
cluding these:

• More than 1,000 quotes. This
was the most rewarding part of
creating the site. These curated
quotes make the website much
more than a simple metadata
index. The quotes have also been

important in creating interesting
content to promote the history of
IEEE Software on social media
such as Twitter because they’re
short but informative.

• Indexes of all 3,000+ articles
and 4,000+ authors. These
indexes enable quick explora-
tion of articles and authors in a
historical context. I also added
a historical timeline for search
results.

• A citation index (based on
Google Scholar searches) cor-
related with the publication year.
This helps show IEEE Software
articles’ broader impact. It also
aids identifying the most cited
articles, authors, or themes.

For more on the website’s content,
see the sidebars.

Historical Data’s
Practical Value
Although the history website is just
six months old, I’ve gathered enough
experience to reflect on its value. I
classify these lessons learned into the
following categories.

Seeing Trends
Historical data enables us to see
trends in software engineering re-
search and practice. In many as-
pects, this is the history website’s
main value, compared to digital li-
braries such as the IEEE Computer
Society Digital Library (CSDL;
www.computer.org/csdl) and IEEE
Xplore (ieeexplore.ieee.org).

To illustrate the possibilities of
seeing trends, Figure 2 shows word
clouds created from terms in IEEE
Software article titles, for four de-
cades. Although IEEE Software

FIGURE 1. IEEE Software front covers displayed at the 2016 editorial-board meeting.

OTHER HISTORIES
OF SOFTWARE ENGINEERING

The IEEE Software history website (obren.info/ieeesw) complements other resources
describing software engineering history, such as these (links to which are also on
the website):

 • “History of Software Engineering”; en.wikipedia.org/wiki/History_of
_software_engineering.

 • N. Wirth, “A Brief History of Software Engineering,” IEEE Annals of the History
of Computing, vol. 30, no. 3, 2008, pp. 32–39.

 • “A Brief History of Software Engineering,” Viking Code School; www.viking
codeschool.com/software-engineering-basics/a-brief-history-of-software
-engineering.

 • A. Brennecke and R. Keil-Slawik, eds., Position Papers for Dagstuhl Seminar
9635 on History of Software Engineering, 1996; www.dagstuhl.de/Reports
/96/9635.pdf.

INSIGHTS

 JULY/AUGUST 2017 | IEEE SOFTWARE 73

covers diverse topics, each decade
has had a few topics that were
more popular.

In the 1980s, topics related to
different programming paradigms
were popular. For instance, paral-
lel and distributed programming
were important topics. Six theme
issues and cover articles discussed
programming:

• 1984, no. 2. Programming: Sor-
cery or Science?

• 1986, no. 4. Firmware Engineer-
ing: The Interaction of Micro-
programming and Software
Technology.

• 1988, no. 1. Parallel Program-
ming: Issues and Questions.

• 1988, no. 3. What Is Object-
Oriented Programming?

• 1989, no. 4. Parallel Program-
ming: Harnessing the Hardware.

• 1989, no. 5. A Compositional
Approach to Multiparadigm
Programming.

In the 1990s, the focus shifted
toward process-related topics. Mea-
surements, metrics, and quality as-
surance also received significant at-
tention. Ten theme issues covered
process management and metrics
(and their combination):

• 1990, no. 2. Using Metrics to
Quantify Development.

• 1991, no. 4. Process Assessment.
• 1992, no. 4. Reliability

Measurement.
• 1993, no. 4. The Move to Ma-

ture Process.

• 1994, no. 4. Measurement-Based
Process Improvement.

• 1996, no. 4. Managing Large
Software Projects.

• 1997, no. 2. Assessing
Measurement.

• 1997, no. 3. Managing Risk.
• 1998, no. 4. Menace or Mas-

terpiece? Managing Legacy
Systems.

• 1999, no. 2. Metrics for Small
Projects.

The 2000s were clearly the age of
requirements engineering. Overall,
IEEE Software has published 163
articles with “Requirements” in the
title. Of those articles, 91 (56 per-
cent) were published in the 2000s.
Seven theme issues covered require-
ments engineering:

data

designtool

case

testing

process

quality

model

method

change

sm
all

metric

network

human

control

global

lesson

lea
rn

ing

dynamic

parallel

sp
ec

ific
ati

on

distributed

technology

realtime

prototypinginterface

building

reuse

performance

largescale

technique

sta
nd

ard

research
user

perspective

formal

estimation

evolution
managing

re
lia

bil
ity

problem

challenge

de
ve

lop
ing

industry

en
gin

ee
r

lan
gu

ag
e

main
ten

an
ce

analysis

usability

support

practice

knowledge

environment

management

objectoriented

framework

im
ple

men
tin

g

pr
oje

ct

information
practical

modeling

application

de
bu

gg
ing

experience

requirements

architecture

ada

communication

operating

integrated

processing

database

verification

large

concurrent

survey

integrating
reusable law

im
ple

men
tat

ion

game

assessment

science

pr
od

uc
tiv

ity

scientific

analyzing

theory

pla
nn

ing

automated

im
pa

ct

measuring

maturity

construction

cobol

programming

data

design
tool

ca
se testing

processqu
ali

ty

model

method
change

metric

network

control

lesson

learning

dy
na

mic

pa
ral

lel

specification

distributed

technology

realtime prototyping

interface
building

reuse

performance largescaletec
hn

iqu
e

standard

research

user

formal

man
ag

ing

reliability problem

developing

industrymain
ten

an
ce

analysis
usability

practice

knowledge

environment

management

objectoriented
framework

implementing

project
information

modeling

application

debugging

experience

re
qu

ire
men

ts

arc
hit

ec
tur

e

operating

integrated

database

verification

large

concurrent

integrating

law

as
se

ss
men

t

science
analyzing

theory

planning

maturity

programming

riskim
pr

ov
em

en
t

lin
uxweb

measurement

critical work
world

inspection

education

co
mpo

ne
nt

re
en

gin
ee

rin
g

java

industrial

safety leg
ac

y

security

applying

cost

developer

businespattern

principle

integration

achieving

organization

disciplinedecision

(a)

(b)

(c)

(d)

da
ta

design

tool

case

testing

process

quality
model

meth
od

change

metr
ic

control

lesson

learning

dis
tri

bu
ted

technology

interface

building

reuse

tec
hn

iqu
e

standard

research

user

managing

problem

developingindustry

maintenance

an
aly

sis

usability

practice

knowledge

man
ag

em
en

t

objectoriented

fra
mew

or
k

implementing

project

information

modeling

application

experiencearchitecture

int
eg

rat
ing

planning

programming

risk
improvement

web

measurement

work

world

education

component

java

se
cu

rit
y

co
st

developer

busines

pattern

organization

de
cis

ion

agile

small

global

pr
ac

tic
al

modeldriven

tes
tdr

ive
n

cot

su
cc

es
sfu

l

team extreme

scientific

engineer
construction

estimation

uml

language

embedded

support

pr
od

uc
tiv

ity

art

co
bo

l

companie
service

improve

collaboration

domainspecific
enterprise

value

automated

community

perspective

measuring

internet

serviceoriented

survey

mining

requirements

data

design

tool

case

tes
tin

g

process

quality

model

change

metric
control

les
so

n

learning

distributed

technology

int
er

fac
e

building
reuse

technique

re
se

arc
h

managing

de
ve

lop
ing

industry

analysis

practice

management

ob
jec

tor
ien

tedframework

project
information

modeling

application

architecture
pr

og
ram

ming

risk

web

work

world

ed
uc

ati
on

component

java

security

cost

de
ve

lop
er

busines
pattern

organization

decision

agile

small

globalmodeldriven

team

estimation

uml

language

embedded

su
pp

or
t

se
rvi

ce

improve

collaboration

enterpriseautomated

community

perspective

internet

serviceoriented

mining

requirements

mobile

cloud

refactoring

technical

analytic

impact

platform
social

human

performance

evolution

challenge

evidence

technologie

empirical network

pr
ofe

ss
ion

al

theory

virtual

int
eg

rat
ion

collaborative

game

defect

safety

solution

largescale

pr
inc

ipl
e

scienceleg
ac

y

FIGURE 2. Word clouds with terms in the titles of IEEE Software articles. (a) 1980s. (b) 1990s. (c) 2000s. (d) 2010s.

INSIGHTS

74 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

IEEE SOFTWARE BIBLIOMETRIC DATA

The IEEE Software history website (obren.info/ieeesw) combines data from the IEEE Computer Society Digital Library (CSDL), IEEE
Xplore, and Google Scholar. The CSDL and Xplore provide useful data about the number of articles and authors.

Approximately 4,500 IEEE Software articles are indexed in Xplore. However, this number includes front and back covers, tables
of contents, and ads. I built a script that extracts only articles with authors. This leaves around 3,250 “proper” articles. Approxi-
mately half of those articles are peer reviewed; the other half includes columns and invited content.

In total, more than 4,200 authors have contributed to IEEE Software. Of those authors, 819 have contributed multiple times—
for example, Diomidis Spinellis (75 articles), Grady Booch (68), Robert Glass (57), Christof Ebert (46), and Forrest Shull (43). These
819 authors authored or coauthored approximately two-thirds of the articles. Fifty-one percent of the articles (mostly department
articles) have one author; 49 percent have multiple authors.

Figure A shows the number of authors and articles per year.
The history website also contains citation data extracted from Google Scholar in February 2017:

 • The cumulative IEEE Software citation count is 161,042 (the sum of all “cited by” fields).
 • The magazine’s h-index is 181; approximately one-half of the citations are from these top 181 articles.
 • The most cited year is 1990, followed closely by 2003 and 1994.
 • The most cited articles are “The 4+1 View Model of Architecture” (2,786 citations), “Reverse Engineering and Design Recov-

ery: A Taxonomy” (2,594 citations), and “Software Risk Management: Principles and Practices” (1,925 citations).

Figure B shows the number of IEEE citations per year of publication.

353

50

1984
92

1985
119

1986

104

1987

93

1988

120

1989

177

1990

121

1991

128

1992

121

1993

168

1994

148

1995

172

1996

206

1997

178

1998

170

1999

180

2000

192

2001

222

2002

225

2003

212

2004

240

2005

239

2006

239

2007

261

2008

302

2009

234

2010

265

2011

269

2012

232

2013

256

2014

306

2015
2016

125

2017

34

1984

62

1985

73

1986

63

1987

52

1988

59

1989

69

1990

50

1991

58

1992

64

1993

82

1994

77

1995

111

1996

124

1997

125

1998

116

1999

105

2000

110

2001

134

2002

136

2003

122

2004

118

2005

113

2006

121

2007

120

2008

131

2009

111

2010

114

2011

110

2012

100

2013

100

2014

115 129

2015
2016

37

2017

(1)

(2)

FIGURE A. The number of (1) authors and (2) articles per year in IEEE Software.

9,361 7,090
6,670

8,219

7,831
9,179

5,470
5,831

5,779

2,510

1984

2,674

1985

1,607

1986

5,169

1987

4,169

1988

3,795

1989
1990

7,084

1991
1992
1993

9,007

1994

8,625

1995

7,037

1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

3,511
2007

4,156

2008

3,626

2009

2,928

2010

1,879

2011

1,932

2012

1,133

2013

932

2014

741 413

2015
2016

3,606

6,381
5,810

6,887

FIGURE B. The number of IEEE citations per year of publication for IEEE Software.

INSIGHTS

 JULY/AUGUST 2017 | IEEE SOFTWARE 75

HISTORY TWEETS—INJECTING THE PAST INTO SOCIAL MEDIA

The IEEE Software history website (obren.info/ieeesw) also promotes IEEE Software on social media. From October 2016 to
June 2017, to draw attention to the magazine’s 200th issue (July/Aug. 2017), I’ve been daily tweeting IEEE Software covers and
quotes and interesting historical findings. In this way, each IEEE Software issue has been mentioned at least once before the
publication of our 200th issue.

The tweets have provided an interesting way to engage with a broader, younger audience. Many of the old articles from the
1980s have received significant attention. Social-media interaction has also enabled us to reconnect with some of the early authors.

Also, on Twitter under #SE_history (twitter.com/hashtag/se_history) are more than 500 tweets about IEEE Software his-
tory. We plan to tweet there again as new issues are added. Figure C shows a few interesting tweets.

FIGURE C. Some interesting tweets from the IEEE Software history website.

INSIGHTS

76 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

• 2000, no. 3. Requirements En-
gineering: Getting the Details
Right.

• 2003, no. 1. RE 02: A Major
Step toward a Mature Require-
ments Engineering Community.

• 2004, no. 2. Practical Require-
ments Engineering Solutions.

• 2005, no. 1. Innovation in Re-
quirements Engineering.

• 2006, no. 3. RE 05: Engineering
Successful Products.

• 2007, no. 2. Stakeholders in Re-
quirements Engineering.

• 2008, no. 2. Quality
Requirements.

In the 2010s, the focus shifted to-
ward architecture:

• 2010, no. 2. Agility and
Architecture.

• 2013, no. 2. Twin Peaks of Re-
quirements and Architecture.

• 2013, no. 6. Architecture
Sustainability.

• 2015, no. 5. Software
Architecture.

• 2016, no. 6. The Role of the
Software Architect.

Overall, IEEE Software has pub-
lished 167 articles with “Architec-

ture” or “Architect” in the title. Of
those articles, 97 (58 percent) have
been published since 2010.

Preventing Knowledge Inflation

There’s a lot of forgetting, and a lot
of “never knew that” in our field
today.1 —Robert Glass

Those who cannot remember the
past are condemned to repeat it.
—George Santayana

Knowing history can help us avoid
repeating errors and building on
each other’s work. As Robert Glass
noted, we keep forgetting early con-
tributions and often reinvent the
wheel. In my experience, much cur-
rent software engineering work, es-
pecially practitioner’s books and
posts, aren’t well connected to previ-
ous work. Similarly, Martin Fowler
talked about semantic diffusion,
which occurs when a definition gets
spread through the wider commu-
nity in a way that weakens it.2 Of-
ten this weakening is a consequence
of lack of awareness of the original
work related to the definition.

I call this problem the inflation
of software engineering terms and
knowledge (see Figure 3). The dif-
ficulty of finding previous work of-
ten leads to reinvention of concepts
and solutions. The reinvented so-
lutions get documented and pub-
lished, leading to the invention of
new terms and creation of isolated
content (unconnected to previous
work). These new terms and con-
tent increase the already significant
number of articles and posts, which
makes finding previous work even
more difficult. New cycles of such
reinventions are inevitable.

Unfortunately, IEEE Software is
partly to blame for this cycle. Just

by looking at the covers, you can
see that many themes repeat. For in-
stance, there have been four “busi-
ness of software” issues:

• 2002, no. 6. The Business of
Software Engineering.

• 2004, no. 5. The Business of
Software Engineering.

• 2011, no. 4. Software as a
Business.

• 2016, no. 5. The Business of
Software.

Looking at the introductions of the
later theme issues, you can see that
none of them connects to any of the
previous ones. Nor do they relate
to the brilliant but largely forgotten
1984 issue (no. 3) on Capital-Intensive
Software Technology.

IEEE Software provides content
that can help root new contributions
in previous solid peer-reviewed re-
search and practices. Many IEEE
Software authors have been the
originators of nowadays mainstream
concepts and ideas. For examples, 10
of the 17 authors of the “Manifesto
for Agile Software Development”3
have written for IEEE Software:
Kent Beck, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James
Grenning, Andrew Hunt, Ron Jef-
fries, Robert Martin, Steve Mellor,
and Dave Thomas.

Detailed, easily accessible histori-
cal data can help slow down the in-
flation of knowledge by making it
easier to find and connect to previ-
ous work and ideas.

Being a Source of Inspiration
Another value of easily accessible
historical information is in its rel-
evant and inspirational content. I
was surprised to discover that many
articles from the 1980s and 1990s
are still relevant. For example, con-

Previous work is
dif�cult to �nd.

The number of
articles and
posts grows.

The wheel
is reinvented.

New terms are
invented and new
isolated content

is created.

FIGURE 3. The vicious cycle of

inflation of software engineering terms

and knowledge. New cycles of such

reinventions are inevitable.

INSIGHTS

 JULY/AUGUST 2017 | IEEE SOFTWARE 77

sider this quote from Bruce Shriver’s
introduction of the first IEEE Soft-
ware issue in 1984:

Many of the challenges facing the
software industry today are a direct
result of our insatiable appetite for
new computer-based systems appli-
cations. Others confront us simply
because we have not managed to
successfully solve a large number of
problems that we ourselves created
many years ago.

Specifically, we still, by and large,
lack the necessary methods to
increase our ability to design and
implement high-quality systems.4

This quote still accurately summa-
rizes current software engineering
challenges.

I’ve come across quite a few such
insightful pieces. For my daily work,
I’ve found early work on software
architecture, quality, and mainte-
nance still insightful and inspiring.
Here are three of my favorite quotes:

Architecture is not so much about
the software, but about the people
who write the software. The core
principles of architecture, such
as coupling and cohesion, aren’t
about the code. The code doesn’t
“care” about how cohesive or
decoupled it is; if anything, tightly
coupled software lacks some of
the performance snags found in
more modular systems. But peo-
ple do care about their coupling
to other team members.5

We are so used to the notion that
quality must take a back seat to
productivity that we continue
to put up with practices that we
know will produce software of
lesser quality.6

The greater speed of technical
change means that capital invest-
ment must be recovered more
quickly and that enhancement
and evolution consume propor-
tionately more resources than in a
slowly changing technology. This
contributes to the fact that main-
tenance and enhancement are the
dominant costs in the software life
cycle today.7

I particularly like the clarity of
definitions and research questions in
the early articles, which often have
defined a new field. Knowing such
early work also helps you have au-
thority in the field.

In my practical work as a con-
sultant, I’ve discovered the value of
historical content as an antidote to
hype. Nothing cools down a heated
sales pitch about a “revolutionary”
new technology more than show-
ing the presenter a 30-year-old arti-
cle describing the same or a similar
concept, sometimes with empirical
studies, and asking how the “new”
solution differs. I’ve used this tactic
successfully a few times. For exam-
ple, people presenting a new low-
code platform are often proud of the
platform’s use of visual program-
ming that supposedly implements a
new programming paradigm. How-
ever, as Shi-Kuo Chang’s 1987 sur-
vey on visual languages shows, many
such visual-programming techniques
are more than 30 years old.8

I also came across many inspi-
rational but less known and unex-
pected pieces, such as great articles
from Alan Kay and Christopher
Alexander:

You could ... say that the main
business of everyone on earth is
to help everyone else—including
ourselves—get enlightened because

the technology is getting more and
more dangerous.9

What I am proposing ... is a view
of programming as the natural,
genetic infrastructure of a living
world which you/we are capable of
creating, managing, making avail-
able, and which could then have the
result that a living structure in our
towns, houses, work places, cities,
becomes an attainable thing. That
would be remarkable. It would turn
the world around, and make living
structure the norm once again,
throughout society, and make the
world worth living in again.10

And this just scratches the sur-
face. Please explore these quotes
yourself, and use social media to let
everyone know when you find some
new inspirational pieces.

Another piece of inspiration is
what I call “the art of IEEE Soft-
ware.” The covers, as well as the arti-
cle illustrations, depict key software
engineering concepts in an original
and artistically pleasing way.

Having Intrinsic Historical Value
History has value in itself. People
care about it. For example, Alison
Gopnik explained that acknowledg-
ing the truth about the past, good or
bad, individually or collectively, is
deeply important to us as humans,
even when it has no immediate ef-
fect on the present.11 I think the
same concept applies to the history
of software engineering. Many of us
software engineering professionals
find it important to acknowledge the
truth about the past for its own sake,
even when it has no immediate effect
on what we do now.

Gopnik also noted that many par-
ents spend much energy trying to deter-
mine their children’s future. However,

INSIGHTS

78 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

parents can’t give their children a
good future, but they can give them
a good past. That also applies to us.
Can we as potential authors deter-
mine software engineering’s future?
Who knows? We can try. But it’s
not completely in our hands. And
history teaches us that we have, on
quite a few occasions, been wrong.
For instance, Fred Brooks, in an ex-
cerpt from his book The Mythical
Man-Month that appeared in IEEE
Software, said, “[David] Parnas was
right, and I was wrong [about infor-
mation hiding].”12 But can we give
software engineering a good history?
This is definitely much more under
our control.

Defining IEEE Software’s Future

Who controls the past … con-
trols the future: who controls the
present controls the past.
—George Orwell

Finally, one value of maintaining
an accessible website about our his-
tory is being able to see how our
past impacts IEEE Software’s fu-
ture. Orwell’s quote from 1984
(don’t forget that IEEE Software
started in 1984) in many ways re-
flects the magazine’s situation. The
most obvious example is the impact
factor—the frequency with which
the average article or paper in a
publication has been cited in par-
ticular years. Although the impact

factor is based on past data, it di-
rectly influences a publication’s rep-
utation and future. A high impact
factor normally attracts more high-
quality contributions. High-quality
articles and papers are normally
cited more, which might further in-
crease the impact factor. And vice
versa: publications with a low im-
pact factor normally attract fewer
high-quality contributions, which
might start a vicious cycle of de-
creasing impact factors.

U p to now, the IEEE Soft-
ware history website has
been an experiment. It’s

still a prototype, and we’re still ex-
perimenting with different ways of
presentation, adding new content
and releasing changes frequently.

You can help contribute to this
history. For example, write great
new articles for IEEE Software. In-
vest the effort to find previous re-
search and connect your research to
it. Or, promote historical content in
any medium—for example, by using
that content in education and as in-
spiration in daily work.

References
1. R.L. Glass, “‘Silver Bullet’ Milestones

in Software History,” Comm. ACM,

vol. 48, no. 8, 2005, pp. 15–18.

2. M. Fowler, “Semantic Diffusion,” 14

Dec. 2006; martinfowler.com/bliki

/SemanticDiffusion.html.

3. K. Beck et al., “Manifesto for Agile

Software Development,” 2001; agile

manifesto.org.

4. B.D. Shriver, “From the Editor-in-

Chief,” IEEE Software, vol. 1, no. 1,

1984, pp. 4–5.

5. J.O. Coplien, “Reevaluating the

Architectural Metaphor: Toward

Piecemeal Growth,” IEEE Software,

vol. 16, no. 5, 1999, pp. 40–44.

6. P. Hsia, “Learning to Put Lessons

into Practice,” IEEE Software, vol.

10, no. 5, 1993, pp. 14–17.

7. P. Wegner, “Capital-Intensive Soft-

ware Technology,” IEEE Software,

vol. 1, no. 3, 1984, pp. 7–45.

8. S.-K. Chang, “Visual Languages: A

Tutorial and Survey,” IEEE Soft-

ware, vol. 4, no. 1, 1987, pp. 29–39.

9. “Inventing the Future” (interview

with A. Kay), IEEE Software, vol.

15, no. 2, 1998, pp. 22–23.

10. C. Alexander, “The Origins of

Pattern Theory: The Future of the

Theory, and the Generation of a Liv-

ing World,” IEEE Software, vol. 16,

no. 5, 1999, pp. 71–82.

11. A. Gopnik, The Philosophical Baby:

What Children’s Minds Tell Us about

Truth, Love, and the Meaning of Life,

Farrar, Straus and Giroux, 2009.

12. F. Brooks, “The Mythical Man-

Month after 20 Years” (book ex-

cerpt), IEEE Software, vol. 12, no. 5,

1995, pp. 57–60.

ŽELJKO OBRENOVIĆ is a principal consultant

at the Software Improvement Group. Contact him

at obren@acm.org.

Subscribe today for the latest in computational science and engineering research, news and analysis,
CSE in education, and emerging technologies in the hard sciences.

www.computer.org/cise

