
CONVERSATIONS
WITH THE PAST

10 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

Quotes from IEEE
Software History
Željko Obrenović

JUST LIKE SOFTWARE engineer-
ing, IEEE Software has a rich his-
tory. Since 1984, many leading
software engineering professionals
have contributed ideas and lessons
they’ve learned to the magazine.

In my role as an informal curator
of the IEEE Software history web-
site (https://obren.info/ieeesw),1 I’ve
read quite a few of the early IEEE
Software articles. Although many of
these contributions are now obso-
lete, I was surprised to find out how
much of the early work is still valid.

To call attention to the relevance of
such often-forgotten articles, I created
an alternative view of IEEE Software
history, extracting quotes organized
in “conversations.” Each conversation
pairs a quote from the magazine’s

early days (1984–1990) with a more
contemporary quote, with at least
20 years between the two. In this
way, I hope to illustrate that some key
ideas and topics are classic and have
value even decades later.

My selection of quotes isn’t an at-
tempt to create a static, systematic
overview of all software engineering
trends. It only scratches the surface.
The main goal is to create an inter-
esting, inspirational presentation
of software engineering history, at
least as captured by IEEE Software.
I hope to pique your curiosity so that
you study this history and engage in
such conversations with it yourself.

So, why are many of the old soft-
ware engineering articles still impor-
tant? Figure 1 shows the progress of

two sides of software engineering:
technological and human. On the
one hand, computing technology
has been progressing in a superlinear
fashion for years. And software en-
gineering has been closely related to
this trend. Moreover, software has
been a main driver behind most of
the recent technological advances.

For instance, over the past 10
years, IEEE Software has covered
mobile computing, cloud comput-
ing, big data and analytics, automo-
tive software, the Internet of Things,
social media and crowdsourcing,
cyber-physical systems, and bit-
coins and cryptocurrency. These are
largely new phenomena whose size,
complexity, and novelty have no di-
rect parallels with the early years of

Co
m

pu
tin

g
ca

pa
bi

lit
ie

s

Hu
m

an
 c

ap
ab

ili
tie

s

–50 years –10,000 yearsNow Now

FIGURE 1. Two sides of software engineering: technological and human. Software engineering has progressed quickly, but human

nature and behavior haven’t. That’s why old software engineering articles are still relevant.

CONVERSATIONS WITH THE PAST

 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE 11

software engineering and IEEE Soft-
ware. Lessons learned about some
technology trend 20 years ago (or
in some cases only a few years ago)
tend to have limited value today. Al-
though such technology-centric con-
tributions are highly relevant at the
moment of their publication, they’re
normally only a stepping stone in
the development of technology, with
little value for the next technology
generation.

And then there’s the human side.
Human nature and cognitive capa-
bilities haven’t advanced with tech-
nology. That’s the main reason why
old software engineering contribu-
tions are still important. Software
engineering is more about humans
than about computers. It’s concerned
primarily with techniques that help
people deal with complexity, ambigu-
ity, and each other as they build com-
plex software systems. Or, as James
Coplien so nicely expressed, the
core principles of software architec-
ture, such as coupling and cohesion,

aren’t about the code.2 The code
doesn’t “care” about how cohesive
or decoupled it is. But people do care
about their coupling to other team
members. And about these and many
other human issues, we can still learn
much from our past. The challenge is
to extract and keep these lessons.

For a selection of quotes, see
the sidebar. For the complete
collection, see the Web Extra

at https://extras.computer.org/extra
/mso2018050010s1.pdf.

References
 1. Z. Obrenović, “Insights from the

Past: The IEEE Software History Ex-

periment,” IEEE Software, vol. 34,

no. 4, 2017, pp. 71–78.

 2. J.O. Coplien, “Reevaluating the

Architectural Metaphor: Toward

Piecemeal Growth,” IEEE Software,

vol. 16, no. 5, 1999, pp. 40–44.

ABOUT THE AUTHOR

ŽELJKO OBRENOVIĆ is a consultant at the Software Improve-

ment Group and is on IEEE Software’s advisory board. Contact him at

z.obrenovic@sig.eu.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

JULY/AUGUST 2016

www.computer.or
g/cloudc

omputing

MANUFACTURING

& THE CLOUD

Mobile Service Computing 32

Securing Cryptographic Keys 42

MARCH/APRIL 2016

www.computer.org/cloudcomputing

Security and
Dependability
of Cloud-Assisted
Internet of Things
Live Migration 12
Capability-Oriented

Methodology 58

computer.org/
cloudcomputing

Subscribe today!
IEEE Computer Society’s newest magazine

tackles the emerging technology
of cloud computing.

MAY/JUNE 2016
www.computer.org/cloudcomputing

MAY/JUNE 2016
www.computer.org/cloudcomputing

AUTONOMICCLOUDS
Software-De� ned Networking 8Datacenter Threats 64

CONVERSATIONS WITH THE PAST

12 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

SAMPLE QUOTES

1984 2009
Many of the challenges facing the software industry today are
a direct result of our insatiable appetite for new computer-
based systems applications. Others confront us simply because
we have not managed to successfully solve a large number of
problems that we ourselves created many years ago.

Our aspirations grow faster than our capabilities, so I don’t
expect software development to “get solved.”

B.D. Shriver, “From the Editor-in-Chief,” IEEE Software, vol. 1,
no 1, pp. 4–5.

M. Shaw, “Continuing Prospects for an Engineering Discipline
of Software,” IEEE Software, vol. 26, no. 6, 2009, pp. 64–67.

1984 2009
I believe that in our branch of engineering, above all others,
the academic ideals of rigor and elegance will pay the high-
est dividends in practical terms of reducing costs, increasing
performance, and in directing the great sources of compu-
tational power on the surface of a silicon chip to the use and
convenience of man.

It’s possible to combine rigor and relevance in computing re-
search in a fairly simple manner. Will (at least some) journals
require researchers to pursue this approach? Will research-
ers begin to employ it? Will practitioners, once relevant work
starts pouring forth from research journals, pay attention?
Our field’s future relevance is at stake. That communication
chasm that has for so long separated our research and prac-
tice communities might at last begin to go away.

C.A.R. Hoare, “Programming: Sorcery or Science?,” IEEE Soft-
ware, vol. 1, no. 2, 1984, pp. 5–16.

R.L. Glass, “Making Research More Relevant While Not
Diminishing Its Rigor,” IEEE Software, vol. 26, no. 2, 2009,
pp. 96, 95.

1984 2016
Periods of rapid technological change require more innovation
and greater risks than periods of stability.

The fast-changing nature of our field is one of the things
that make working in software so much fun—and so
challenging.

P. Wegner, “Capital-Intensive Software Technology,” IEEE
Software, vol. 1, no. 3, 1984, pp. 7–45.

M. Vierhauser, R. Rabiser, and P. Granbacher, “Monitoring
Requirements in Systems of Systems,” IEEE Software,
vol. 33, no. 5, 2016, pp. 22–24.

1985 2011
The use of formal notation does not, however, preclude that of
natural language. In fact, mathematical specification of a prob-
lem usually leads to a better natural-language description. This
is because formal notations naturally lead the specifier to raise
some questions that might have remained unasked, and thus
unanswered, in an informal approach.

Research has shown that formal specifications and meth-
ods help improve the clarity and precision of requirements
specifications.

B. Meyer, “On Formalism in Specifications,” IEEE Software,
vol. 2, no. 1, 1985, pp. 6–26.

D. Drusinsky et al., “Verification and Validation for
Trustworthy Software Systems,” IEEE Software, vol. 28,
no. 6, 2011, pp. 86–92.

CONVERSATIONS WITH THE PAST

 SEPTEMBER/OCTOBER 2018 | IEEE SOFTWARE 13

1984 2008
An abstraction is a simplified description, or specification, of a
system that emphasizes some of the system’s details or prop-
erties while suppressing others. A good abstraction is one
that emphasizes details that are significant to the reader or
user and suppresses details that are, at least for the moment,
immaterial or diversionary.

Determining the appropriate level of abstraction is an old
debate in the patterns community—authors are always
asking, “Where should abstraction end?”

M. Shaw, “Abstraction Techniques in Modern Programming
Languages,” IEEE Software, vol. 1, no. 4, 1984, pp. 10–26.

L. Rising, “Understanding the Power of Abstraction in
Patterns,” IEEE Software, vol. 24, no. 4, 2007, pp. 46–51.

1985 2014
The lack of a complete theoretical basis for distributed com-
puting systems need not inhibit the development of useful
systems. Even without such a basis, many technical advances
have been made by individuals, who then share them with
others, who in turn accept useful concepts and add further
innovations.

The capacity to reflect on past practice is important for
continuous learning in software development. Reflection
often takes place in cycles of experience followed by con-
scious application of learning from that experience, during
which a software developer might explore comparisons,
ponder alternatives, take diverse perspectives, and draw
inferences, especially in new and/or complex situations.

S.F. Lundstrom and D.H. Lawrie, “Experiences with Distrib-
uted Systems,” IEEE Software, vol. 2, no. 3, 1985, pp. 5–6.

T. Dybå, N. Maiden, and R.L. Glass. “The Reflective Soft-
ware Engineer: Reflective Practice,” IEEE Software, vol. 31,
no. 4, 2014, pp. 32–36.

1985 2017
Today we tend to go on for years, with tremendous effort to
find that the system, which was not well understood to start
with, does not work as anticipated. We build systems like the
Wright brothers built airplanes—build the whole thing, push it
off the cliff, let it crash, and start over again.

39 percent even used the production system as a testing
environment

W.E. Howden, “The Theory and Practice of Foundation Test-
ing,” IEEE Software, vol. 2, no. 5, 1985, pp. 6–17.

M. Kassab, J.F. DeFranco, and P.A. Laplante, “Software Test-
ing: The State of the Practice,” IEEE Software, vol. 34, no. 5,
2017, pp. 46–52.

1986 2016
One of the major challenges facing project software system
managers and maintainers in the 1980’s is how to upgrade
large, complex, embedded systems, written a decade or more
ago in unstructured languages according to designs that
make modification difficult.

It’s also important to understand the difference between
what a single programmer can do and what large teams of
programmers can do. Even the best practices of refactor-
ing are really a joke in the context of a large legacy ap-
plication. Refactoring tools really don’t help you with large
legacies.

R.N. Britcher and J.J. Craig, “Using Modem Design Practices
to Upgrade Aging Software Systems,” IEEE Software, vol. 3,
no. 3, 1986, pp. 16–24.

D. Thomas quoted in S. Johann, “Dave Thomas on Innovat-
ing Legacy Systems,” IEEE Software, vol. 33, no. 2, 2016,
pp. 105–108.

SAMPLE QUOTES (cont.)

