
Conversations with the Past:

50 Quotes from IEEE Software History

ŽELJKO OBRENOVIĆ

Just like Software Engineering, IEEE Software has a very rich history. Since 1984, many of

the leading software engineering professionals have contributed ideas and lessons they

learned to IEEE Software.

In my role as an informal “curator” of IEEE Software history site [1], I read for the first time

many of the largely forgotten early IEEE Software articles. While lots of these contributions

are obsolete nowadays, I was surprised to find out how much of early work is still actual.

To call attention to relevance of such often forgotten software engineering articles, I created

an alternative view on the IEEE Software history, extracting 50 quotes organized in 25

“conversations”. Each conversation features two quotes, one from the early days of IEEE

Software (1984–1990), and another one more contemporary, with the threshold of at least 20

years in between. In this way, I want to illustrate that some key ideas and topics are

“classical” and have value even decades later.

My selection of quotes is not an attempt to create a systematic overview of all trends in

software engineering. It only scratches the surface. The main goal of this conversations is to

create an interesting and inspirational presentation of software engineering history, at least as

captured by IEEE Software. I want to trigger the curiosity of the reader to study and engage

in such “conversations” with our history themselves. In other words, instead of presenting a

static view on trends, I wanted to create a more dynamic medium, hopefully stimulating

readers to read again old software engineering contributions.

Before presenting the quotes, I would also like to briefly reflect on my view on why many of

the “old” software engineering articles are important today. Figure 1 illustrates my view on

this issue, showing the progress of two sides of software engineering: technological and

human. On the one hand, computing technology has been progressing in a superliner fashion

for years. And software engineering has been closely related to this trend. Moreover,

software has been a main driver behind most of the recent technological advances. In past ten

years, for instance, IEEE Software has covered topics including mobile computing, cloud

computing, big data and analytics, automotive software, internet-of-things, social media and

crowd sourcing, cyber-physical systems, bitcoin and cryptocurrency. These are largely new

phenomena that in their size, complexity and novelty do not have direct parallels with early

years of software engineering and IEEE Software. Lessons learned about some technology

trend 20 years (or in some cases only few years ago), tend to have limited value today. While

such technology-centric contributions are highly relevant at the moment of their publication,

they are normally only a stepping stone in development of technology, with little value for

the next technology generation.

Figure 1: Two sides of software engineering: technological and human. Software

engineering is more about people than about computers. A brief remainder on why “old”

software engineering articles are still relevant.

And then there is the human side. Human nature and cognitive capabilities have not advanced

with technology. That is, in my view, the main reason why old software engineering

contributions are still important. Software engineering is more about humans than about

computers. It is primarily concerned with techniques that help people to deal with

complexity, ambiguity, and each other as they build complex software systems. Or, as nicely

expressed by James Coplien [2], the core principles of software architecture, such as coupling

and cohesion, aren't about the code. The code doesn't 'care' about how cohesive or decoupled

it is. But people do care about their coupling to other team members. And about these and

many other human issues we can still learn a lot from our past. The challenge is to extract and

keep these lessons.

References

1. Z. Obrenovic, "Insights from the Past: The IEEE Software History Experiment," in IEEE
Software, vol. 34, no. 4, pp. 71-78, 2017.

2. J. O. Coplien, "Guest Editor's Introduction: Reevaluating the Architectural Metaphor-
Toward Piecemeal Growth," in IEEE Software, vol. 16, no. , pp. 40-44, 1999.

25 Conversations with the Past

