
Se
rv

ic
e

M
as

hu
ps

56 Published by the IEEE Computer Society 1089-7801/09/$26.00 © 2009 IEEE IEEE INTERNET COMPUTING

O ne of the most basic rules that
students learn in science classes
is that oil and water don’t mix.

To some extent, the same applies when
you combine Web services with other
software services and components. In
our projects, for example, we’ve com-
bined highly diverse software services,
mixing the world of Web services with
that of low-level devices.1 The for-
mer use high-level XML data struc-
tures with a relatively slow response,
whereas the later employ low-level data
structures with high performance. Cre-
ating applications that mash up both
worlds requires solutions that bridge
many semantic and temporal gaps
among the services’ interfaces and data
structures. In addition, different users

have different expertise and require-
ments and need mashup environ-
ments that suit them. Ideally, mashups
should be easy for novices to pick up
but also provide the ambitious func-
tionality that experts need. However,
most existing mashup solutions — such
as Yahoo Pipes (http://pipes.yahoo.
com) and iGoogle (www.google.com/
ig) — require underlying services uni-
formity, don’t support the development
of highly interactive applications that
include local services and devices, and
provide limited interface variability.

Here, we describe our experiences
in mashing up interactive applications
using heterogeneous software services.
Our solutions let users choose various
environments, such as spreadsheets or

Connecting heterogeneous services is a complex endeavor that requires

support at both the middleware and user-interface levels. Offering users a

varied palette of mashup development environments and service interfaces

lets users choose elements appropriate to their skill levels and their tasks. The

authors discuss their experiences using various development paradigms, such

as spreadsheets and high-level scripting, to mash up diverse services. They

describe their middleware and service adapters, which abstract the difference

between service interfaces, and compare several mashup interfaces aimed at

different user groups.

Željko Obrenović
Technical University Eindhoven

Dragan Gašević
Athabasca University

Mashing Up Oil and Water
Combining Heterogeneous Services
for Diverse Users

NOVEMBER/DECEMBER 2009 57

Mashing Up Oil and Water

scripting, to mash up various remote and local
services, such as connecting a Google search
service with a local text-to-speech (TTS) ser-
vice. Our work’s central challenge is managing
the complexity of connecting heterogeneous
services and suiting diverse user needs; the
goal isn’t to reduce this diversity, but rather to
support it both at the middleware and UI lev-
els. Although diversity increases the solutions’
complexity, it also exposes many new possibili-
ties, such as easier integration of existing soft-
ware and services and a lower learning curve
for users because the environments are familiar.

Our discussion addresses two main issues.
First, we describe the challenge of intercon-
necting heterogeneous services, briefly high-
lighting our middleware and service adapters
that abstract the difference between service
interfaces. Our middleware opens up possi-
bilities for mashups that aren’t purely Web-
oriented, letting us compose local services with
those available on the Web. Second, we explore
how diverse end users and developers mash up
these heterogeneous services, describing and
comparing several mashup development inter-
faces — including spreadsheets, Web browser
extensions, and scripting and programming
languages — that we’ve built on top of our mid-
dleware to suit different user groups.

Mashing Up Heterogeneous Services
In our project and academic experiences, we’ve
dealt with hugely diverse software services
and developer backgrounds. Our initial work
shows the benefits of providing a uniform view
on diverse services and rapidly prototyping
those services using higher-level XML lan-
guages.1 The solutions we discuss here result
from our attempts to make our products acces-
sible to a broader end-user audience, such as
interaction designers, who usually have highly
diverse backgrounds but little knowledge about
advanced programming and markup languages
(such as XML). Although our work is still in its
early stages, our solutions have been success-
fully used by a range of people — from first-
year industrial design undergraduates with no
programming experience to experienced devel-
opers — each of whom chose and combined dif-
ferent components of our framework.

As Figure 1 shows, our approach’s basic
idea is to abstract the differences between
diverse service interfaces and enable the use of

different mashup development environments
on top of this abstraction. Doing so supports
services composition by users with different
technical skill levels. (The sidebar, “Services,
Middleware, and Mashups,” discusses related
work in this area.)

Rather than introducing one integrated envi-
ronment, we provide a palette of development
environments and service interfaces and let
users and developers choose the elements most
appropriate to their skills and tasks. Our frame-
work, therefore, introduces two basic elements:

• middleware and a set of service adapters that
abstract the service differences and provide
a common data integration space, and

• multiple mashup development environments
— including spreadsheets, scripting, and
advanced programming languages — built
over this abstraction to address diverse
user needs.

Middleware and Service Adapters
Our Adaptable Multi-Interface Communicator
(Amico) middleware is a message-oriented sys-

Shared data repository
Noti�cation service

Data adaptation

TCP
interface

UDP
interface

SOAP
interface

HTTP GET/POST
interface

XML-RPC
interface

OSC
interface

ODBC
interface

SPARQL
interface

Mashup interfaces

Application speci�c
interfaces

C++
Prolog

Middleware

Mashups

Service
interfaces

Addressing
diverse user needs

Abstracting
service differences

End users Advanced end users
and Web developers

Developers

Spreadsheets Web browser
scripting, plugins...

Advanced languages
and XML

<xml/>

Figure 1. Our basic approach to mashup creation. By abstracting
the differences between diverse service interfaces, we can create
different mashup interfaces on top of the abstraction to support
end-user service composition.

Service Mashups

58 www.computer.org/internet/ IEEE INTERNET COMPUTING

tem based on the ideas from loosely coupled
notification infrastructures and coordination
languages.2,3 Our original aim with Amico was
to support rapid prototyping with diverse open-
source software components and thereby sup-
port interactive applications development in
domains such as interactive television.1 We’ve
extended the middleware to enable interaction
with Web and many other services.

Amico’s core is a shared data model with
named untyped data slots, or variables. In
essence, this data model is a simple variables
list, implemented as a hashtable with all vari-
ables placed in the same address space. We
decided to use basic untyped data objects
because they’re simple and flexible.4 We also
wanted to make this data structure manage-
able by end users, so that they could directly
explore basic services’ functionality without
programming. Having variables in a single-
address space is already familiar to many
users through system variables and properties
tables, and our initial experiences with less-
experienced users and students have shown
that the concept is easy for them to under-

stand. Mapping simple data structures is also
straightforward for end-user environments
such as spreadsheets and scripting environ-
ments, as well as in declarative and dynami-
cally typed languages.

The Amico middleware supports several
functions common for message-oriented sys-
tems: UPDATE a variable, GET the variable’s
value, REGISTER for notifications about vari-
able updates, and DELETE a variable. To sim-
plify implementation of service and mashup
adapters, we implemented the functions in a
fault-tolerant way: updates of a nonexisting
variable create a new variable, and requests for
a nonexisting variable simply return an empty
string value rather than an error. We therefore
don’t introduce explicit actions for creating
variables; Amico creates them by first update,
similar to how they’re created with dynami-
cally typed languages.

One of our middleware’s main innova-
tions is that we’ve opened its basic function-
ality (update, get, register, and delete) through
numerous service interfaces that we’ve used
to connect services and development environ-

Services, Middleware, and Mashups

Most existing work in service-oriented computing (SOC)
focuses on Web services.1 SoC isn’t limited to Web

services, however, and embodies key principles such as loose
coupling, implementation neutrality, flexible configurability, per-
sistence, granularity, and teams.2 In the SoC context, a service
is defined as a self-contained functional unit in which service
consumers interact with the service through a well-defined
interface. In this model, the consumer doesn’t know (or care)

how the service implements the requested action — only that
the service performs what is defined by its published interface.

According to the previous definition, we can treat many
software components and systems as software services. Figure
A shows how different communities define different service-
oriented applications and service interfaces. All the service
interfaces use open Internet protocols and similar service-

Multimedia
applications,

devices

Games Network
games,
devices

Web
services

Applications,
open source

software
(OSS)

components

AJAX
scripts

(Legacy)
Web

applications

SQL
databases

RPC
applications

“Classical”
software

components

Computer-
supported

cooperative
work

applications

Applications,
network games,

OSS components
legacy

components,
devices,

and so on

Open Sound
Control
(OSC)

Remote
console
(RCON) SOAP

over
HTTP

XML-RPC JavaScript
Object

Notation-
RPC

Open
Database

Connectivity
socket

interfaces
protocols,

such as Oracle
and MySQL

RPC
protocols

such as RC,
Java Remote

Method
Invocation

Proprietary
component
middlewares

protocols
such as

CORBA and
JavaBeans

Noti�cation
infrastructure

protocols
such as Linda,
EventHeap,

and JavaSpaces

Connectionless UDP Connection-oriented TCP

HTTP

Figure A. Common service interfaces and Internet protocols for various communities. All services interfaces use open Internet protocols and
similar service-oriented abstractions, yet the protocols and data structures are highly diverse.

continued on p. 59

NOVEMBER/DECEMBER 2009 59

Mashing Up Oil and Water

ments. We support the low-level TCP and User
Datagram Protocol (UDP) interfaces — which
let applications update or read variables by
exchanging simple string messages — as well
as many higher-level interfaces such as HTTP
Get/Post, Extensible Markup Language Remote
Procedure Call (XML-RPC), Open Sound Pro-
tocol (OSC), or SOAP. For each of these inter-
faces, we developed adapters that map variable
updates to service calls and services results to
variable updates. Our platform is extendable
and lets users add new service interfaces. This
enables much easier reuse of existing services
and components because users don’t have to
adapt them to a common interface — that is,
they can adapt them using the component’s
technology and the interface they’re most
familiar with.2 We provide various data adapt-
ers for each service interface. For example, for
handling SOAP-based XML data structures, we
let users define XML adapters (see Figure 2). For
XML-RPC, OSC, and other service interfaces,
we define mapping between variables and the
string equivalent of the interfaces’ basic data
types (such as integer or char).

Multiple Mashup Development Interfaces
We’ve built several mashup development inter-
faces on top of our middleware. Each mashup
environment provides similar capabilities
(update, get, register for, and delete variables)
but is based on different standards and appro-
priate for users with different expertise levels.
The motivation behind our interface design is
similar to a multilayered UI philosophy5 — it lets
users start with a basic mashup development
interface (such as a spreadsheet) and switch to
more advanced development interfaces as their
expertise develops or they need more complex
integration functionality. For example, in our
courses on intelligent UI design and interactive
systems sketching, students used spreadsheets
in the beginning to quickly sketch, discuss, and
evaluate interactive systems prototypes and
then switched to advanced scripting languages
or Web browser extensions to create more com-
plex solutions. Various tools also follow this
design philosophy: many video games have
dozens of layers, most search engines (including
Google and Yahoo) have novice and advanced
layers, and many art and video tools (such as

Services, Middleware, and Mashups, cont.

oriented abstractions, but there’s a huge diversity of protocols
and data structures. Each interface has a significant supporting
community, and efforts toward unification are limited.

If you want to combine services that use different service
interfaces, existing solutions don’t provide many possibilities.
Most middleware solutions focus on one of the higher-level
protocols — such as SOAP, common object request broker
(Corba), or JavaBeans — and require services to adapt to one
common interface.3 Researchers are also attempting to con-
nect different service interfaces, building bridges between, for
example, SOAP and Corba, and Java remote method invocation
(RMI) and Microsoft.net Internet Inter-ORB Protocol (IIOP;
http://j-integra.intrinsyc.com). However, given the number of
service interfaces, there are many possible combinations, and
maintaining the links is rather complex. The Service-Oriented
Device Architecture (SODA) is an attempt to increase user
services’ diversity by modeling devices as services embedded
on an enterprise service bus.4 SODA makes device access and
control available to a range of enterprise applications. Although
it’s an interesting conceptual proposal, however, there are still
no existing middleware solutions that support this idea.

Mashups let users create Web sites and applications that com-
bine content from several sources into a single integrated experi-
ence.5,6 ProgrammableWeb.com illustrates the current state of
mashups on the Internet. Although existing service mashup inter-

faces let users combine numerous services, they usually require
uniformity of service interfaces — often focusing on Web ser-
vices — and thus exclude many existing software services and
components. Also, most mashup environment interfaces primar-
ily suit less-experienced developers and offer a server-based pipe-
line service composition. Further, mashup infrastructures such as
iGoogle and Yahoo Pipes aren’t open source and introduce the
“lock in” problem — that is, customers not only become depen-
dent on a particular vendor for products and services, but switch-
ing to another vendor entails a substantial cost.

References
1. F. Curbera et al., “Unraveling the Web Services Web,” IEEE Internet Comput-

ing, vol. 6, no. 2, 2002, pp. 86–93.

2. M.N. Huhns and M.P. Singh, “Service-Oriented Computing: Key Concepts

and Principles,” IEEE Internet Computing, vol. 9, no. 1, 2005, pp. 75–81.

3. I. Gorton, A. Liu, and P. Brebner, “Rigorous Evaluation of COTS Middle-

ware Technology,” Computer, vol. 36, no. 3, 2003, pp. 50–55.

4. S. de Deugd et al., “SODA: Service-Oriented Device Architecture,” IEEE

Pervasive Computing, vol. 5, no. 3, 2006, pp. 94–96.

5. S. Murugesan, “Understanding Web 2.0,” IT Professional, vol. 9, no. 4, 2007,

pp. 34–41.

6. A. Jhingran, “Enterprise Information Mashups: Integrating Information,

 Simply,” Proc. 32nd Int’l Conf. Very Large Databases, U. Dayal et al., eds., ACM

Press, 2006, pp. 3–4.

Service Mashups

60 www.computer.org/internet/ IEEE INTERNET COMPUTING

Apple Final Cut Pro and Adobe Premiere) have
three or more workspaces. Indeed, some tools
have as many as eight layers to accommodate a
wide range of expertise and ambition.

Using diverse mashup development ap proaches
could enable more end-user developers to mash
up new solutions. End-user development is a
highly popular form of computer interaction;
each day, millions of users create their own
solutions using various environments. In the
US alone, there were 55 million end-user devel-
opers in 2004 compared to 2.75 million profes-
sional software developers.6

Benefits and Limitations of Our Approach
Our solutions complement, rather than replace,
existing Web-based mashup integration solu-
tions, letting users combine the results of Web
services integration with non-Web-based soft-
ware services in a rapid-prototyping manner.
Our solution’s main benefits are that it opens up
the possibilities for mashups that aren’t purely
Web-oriented — that is, users can combine local
services with Web services, but also choose the
development environment best suited to their
knowledge and experience.

To abstract data structures, we simplify
them; we don’t support complex data integra-
tions at the middleware level.7 Simple untyped
variables are easy to map to most existing
service interfaces and development environ-
ments, but they put the burden of data clean-
ing, mapping, and transformations on users
and their environments. This also limits the
scope of applications — that is, our approach
might not be feasible for merging complex data
structures that would require users to manage
hundreds of variables. In our experience, the
framework is most useful in early development
phases when users are exploring the possibili-
ties space and looking for novel and useful ser-
vice compositions.

Our aim isn’t to provide fully integrated
environments such as the Web-based Yahoo
Pipes or Marmite environments.8 Often, our
mashup environments serve as the service
connection “backplane,” and we implement
the UI as a separate process — within a Web
page, for example. In our Web examples, we
use scripting and advanced programming
languages to connect services within Amico
middleware and then integrate the resulting
functionality within the Web browser using
plug-ins as the UI.

Mashup Development Environments
To let users mash up services using diverse
development paradigms, we implemented a
diverse set of development environment exten-
sions, including

• spreadsheets, for users with little to no pro-
gramming skills;

• scripting and advanced programming mash-
ups — including support for mainstream
programming languages and nine scripting
languages — for more advanced developers;
and

• Web browser mashups — such as Asynchro-
nous JavaScript and XML (Ajax), plug-ins,
and applets — for advanced users and Web
developers.

Users can add a new language or tool to
our framework in two ways. The first, loosely
coupled approach lets users run a development
environment as a separate external process.
We use this approach with spreadsheets and
Web browser extensions. These environments

<?xml version=“1.0” encoding=“UTF-8”?>
<soap-adapter endpoint-url=“api.google.com”
 endpoint-service-name=“/search/beta2”>
. . .
<method name=“doSpellingSuggestion”
 trigger=“spelling”
 state-variable=“google-spelling-state”>
<parameter name=“phrase” type=“xsd:string”
 type-qualifier=“xsi:type”>
 <%=spelling%>
</parameter>
<result update-variable=“spelling-suggestion”/>
</method>
. . .
</soap-adapter>

Figure 2. Mapping Amico simple data structures (variables) to the
service parameters. An XML fragment of the Amico SOAP adapter
configuration file that defines the mapping of Amico variables to
the Google spelling checker Web service. When the Amico variable
spelling is updated, the Amico SOAP interface calls the Web
service method doSpellingSuggestion, sending the variable’s
content as a parameter. The method’s result is stored in the Amico
variable spelling-suggestion. The Amico SOAP adapter also
updates the variable google-spelling-state with the method
call’s state (that is, working or finished).

NOVEMBER/DECEMBER 2009 61

Mashing Up Oil and Water

run the code in a separate process, updat-
ing or receiving updates of Amico variables
through any supported Amico interface (we
usually used TCP and UDP interfaces, along
with HTTP for Ajax). Alternatively, developers
can write Java-based Amico middleware plug-
ins to integrate scripting-language support.
In this case, our middleware instantiates the
plug-ins as internal objects and communicates
with them through a more efficient internal
interface.

Spreadsheet Mashups
Many people find it easier to perform calcula-
tions in spreadsheets than to write an equiva-
lent sequential program. Spreadsheets use
spatial relationships rather than time as the
primary organizing principle in computational
tasks. Because they exploit users’ natural spa-
tial perception and reasoning, spreadsheets are
immensely successful and popular. References
between spreadsheet cells can take advantage of
spatial concepts such as cell relative and abso-
lute positions, as well as named locations, to
make the spreadsheet formulas easier to under-
stand and manage.

To enable spreadsheets-based service com-
position, we’ve implemented add-ins for
 OpenOffice.org Calc and Microsoft Excel.9
From the user’s viewpoint, the add-ons intro-
duce only a few additional functions for use in
spreadsheet formulas. These functions let users
call and receive the results of any Amico-
connected service.

For example, Figure 3 shows an Open Office.
org Calc spreadsheet that connects various
services. The Amico middleware runs service
adapters and local services in separate pro-
cesses that are connected to the spreadsheets
through an add-in. When users enter text, the
system calls several services: it then updates the
spreadsheet cells with a translation of the text
in other languages, spelling suggestions, phrase
definitions, and links to Web pages related to
the entered text; it also plays a recording of the
original and translated text using TTS output.

Specifically, as Figure 3 shows, AMICO_
WRITE(“spelling”;B10) is evaluated every
time cell B10 is updated and calls the Google
spelling-checker service (triggered when the
Amico “spelling” variable is updated). AMICO _
READ(“spelling-suggestion”) then reads the
current value of “spelling-suggestion” that

the Google spelling-checker adapter updates
and also registers notifications about future
variable changes.

Scripting and
Advanced Programming Mashups
Advanced users and developers who are skilled
in scripting and mainstream programming lan-
guages and XML can access Amico and mashup
services from their development environments.

Scripting languages support. Scripting lan-
guages are usually easy for end-user developers
to learn because they use typeless approaches to
achieve a higher level of programming, which
enables more rapid application development
than system programming languages. However,
there’s a huge diversity of scripting languages,
and each has a significant supporting commu-
nity. We therefore decided to support several
popular scripting languages, including

• JavaScript, a dynamic, weakly typed,
prototype- based language;

• Python, a high-level programming lan-
guage that supports multiple programming
paradigms (object-oriented, imperative, and
functional);

Figure 3. A spreadsheet mashup example. This mashup combines
OpenOffice.org’s Calc spreadsheet with services that update the
spreadsheet’s cells with text translations, spelling suggestions, phrase
definitions, and links to related Web pages. It also plays recordings
of the original and translated texts using text-to-speech output.

Service Mashups

62 www.computer.org/internet/ IEEE INTERNET COMPUTING

• BeanShell and Groovy, two Java-based
scripting languages;

• Ruby, a dynamic, reflective, general-purpose,
object-oriented programming language;

• TCL, a popular tool command language;
• Sleep, a procedural scripting language

inspired by Perl and Objective-C;
• Haskell, a standardized, purely functional

programming language with nonstrict
semantics; and

• Prolog, a logic programming language.

Our general scripting support implemen-
tation is based on the Java Scripting Project
(https://scripting.dev.java.net); Prolog support

is based on the JLog project (http://jlogic.source
forge.net). Our middleware runs the scripting
engine for each language, extending each lan-
guage with functions for updating and reading
variables (the UPDATE and GET functions). To
receive the notifications about variable updates
(the REGISTER function), the script must con-
tain a hook function, variableUpdated, which
the middleware then calls when a given vari-
able is updated. For Prolog, a nonprocedural
scripting language, we introduce special predi-
cates for updating, reading, and receiving noti-
fications about variable updates (see Figure 4).
We also support Extensible Stylesheet Language
Transformation (XSLT) scripts, implemented
using standard Java XML libraries. These
scripting extensions let users and developers
use different programming modes — such as
declarative programming, object-oriented pro-
gramming, or logic programming — or combine
them to compose services.

Mainstream language support. Because the
interfaces Amico uses are widely supported,
users can access Amico middleware using
almost any standard programming language
on almost any platform. Developers can access
Amico services using libraries for interfaces,
such as XML-RPC (www.xmlrpc.com/directory/
1568/implementations) or OSC (http://opensound
control.org/implementations), or by exploiting
lower-level TCP or UDP interfaces using the
socket library. We also offer libraries for Java
and C++, which makes work with the socket
library easier.

Figure 5 shows results from the Passe-
partout project, in which various partners use
different programming languages and service

JavaScript Prolog

function variableUpdated(name, value, oldValue
)
{
 if (name == “spelling-suggestion”)
 {if (value = ““) {
 amico.update(“tts-text”, “No
suggestions”);
 } else {
 amico.update(“tts-text”, value);
 }
}

variable(“spelling-suggestion”, ““)
 :- amico_update(“tts-text”,”No suggestions”)
variable(“spelling-suggestion”, V)
 :- amico_update(“tts-text”, V).

Figure 4. JavaScript and Prolog script examples. Both scripts send the result of the spelling-suggestion Web service to a
local text-to-speech service when the “spelling-suggestion” variable is updated.

Virtual LAN player

User pro�les
(ID language, age,

and so on)

Ambulant player

MLIF server

Visual C++

Java

Pillow server

Python C++

UDP

Java

A
pp

lic
at

io
n

sp
ec

i�
c

Sesame RDF
Amico XSLT

transformation

Open sound

control (OSC)

X
M

L-
RP

C

HTTP

TCPText-to-speech
engine

RFID reader

Face detector

“You are
too close”

User ID

Java

Java
Face coordinates

C

Figure 5. An advanced programming language mashup. In this
example, taken from the Passepartout project, we created a
prototype of multimodal interaction with multimedia players,
combining several components written in different languages that
are accessible through diverse service interfaces.

NOVEMBER/DECEMBER 2009 63

Mashing Up Oil and Water

interfaces to access and combine Amico ser-
vices and export their functionality to other
components.10 In this example, we used sev-
eral of the supported service interfaces and
mashup environments.

Web Browser Mashups:
Ajax, Plug-Ins, and Applets
Most service mashups compose services on the
server side, presenting an aggregate interface to
the UI-based client. For our solutions, we also
required client-side mashups, so users could
combine local services — such as a camera-
based gesture recognizer or TTS output — with
remote Web services. Clients can create such
mashups in Web browser clients using Ajax,
applets, and browser plug-ins.

Figure 6 shows two examples built using
Amico Web browser mashups; you can find
more elaborate descriptions of using the three
extensions and their applications elsewhere.4

Browser plug-ins. We developed a generic
Firefox/Mozilla browser extension using a
Firefox/Mozilla extension mechanism based on
the Massachusetts Institute of Technology’s
Semantic Interoperability of Metadata and Infor-
mation in Unlike Environments (Simile) open
source Java Firefox Extension (http://simile.mit.
edu/java-firefox-extension). The extension gives
users full access to browser functions and a Web
page’s content.

The browser plug-ins in our examples usu-
ally serve as a front end for service mashups
defined using other approaches. In the Figure
6a example, users can select any text from the
page, ask for a translation into a selected lan-
guage, and hear the translation with the appro-
priate TTS engine.

Ajax. Figure 6b shows a screenshot of a Web
page with Ajax and applets that let a face
detector control playback on a movie player
embedded within the Web page. Ajax and Web
browser scripting functions can use the XML-
HttpRequest object to access Amico through
the Amico HTTP interface. A mashup of Amico
services then occurs within scripting functions
and event tags, and users can combine page
and browser functionality with Amico ser-
vices. We’ve also been experimenting with add-
ing advanced graphical UIs — such as Flex and
Scalable Vector Graphics — on top of Ajax to

enable, for example, the use of drag-and-drop
functionality to connect services.

This approach’s advantage is that it lets
developers use a well-established browser
scripting environment without any extensions.
The main limitation is that Ajax script func-
tions can update or request Amico values only
as a response to events within the page; they
can’t receive notifications from Amico.

Consequently, we can’t use only Ajax to
build interactive applications that require fre-
quent updates, such as from a face-detection
device.

Applets. To overcome Ajax limitations and
enable fully bidirectional communica-
tion between Amico middleware and a Web
browser, we combined scripting and a custom-
built Java applet. The applet can update Amico
variables and receive Amico service notifica-
tions, mapping them to calls of any embedded
scripting functions.

The disadvantage of using applets is that it
requires users to run a Java virtual machine,
which can introduce significant browser over-
head. Also, browsers can impose complex secu-
rity limitations on applets.

T he diversity of software services and user
needs is often a problem, but — as our work

shows — it can also open many new possibili-
ties, including easier integration of existing
software and lower learning curves. Our frame-
work follows three basic design principles:

• Simplicity. Existing mashup interfaces usu-
ally work with complex XML schemas that

(a) (b)

Figure 6. Web browser mashup examples. (a) The AMICO:WEB
browser toolbar connects a Mozilla/Firefox browser with the
Babelfish Web translation service and to local database and text-
to-speech engines. (b) A Web page with Ajax and applets that lets
a face detector control playback of an embedded movie player.

Service Mashups

64 www.computer.org/internet/ IEEE INTERNET COMPUTING

might be hard for users to understand. Our
aim is to support end-user development and
rapid prototyping for people who can’t spend
much time learning new environments and
configuring the details of every service.
To achieve this, we provide simple service
abstractions and compositions that a range
of users can understand.

• Diversity and extensibility. Most exist-
ing mashup solutions support one group of
standards, such as Web service standards,
and aren’t open or easily extensible. How-
ever, there are many service standards,
and although Web services standards are
increasingly accepted, there will always be
communities that use different standards,
introduce new ones, and build solutions
accordingly. Our mashup framework sup-
ports many existing standards but allows for
the addition of new service interfaces and
mashup development environments.

• Reuse of existing development environments.
Existing mashup interfaces usually introduce
novel functionality that requires additional
learning, whereas building new development
environments is a tedious and time-consum-
ing task. In either case, it’s hard to predict
whether users will accept the results. Our
framework adapts existing environments,
such as spreadsheets, letting users build on
previous experiences and learn how to com-
pose services faster and more efficiently.

In our future work, we plan to introduce
more graphical mashup development interfaces.
We also plan to develop rich libraries of ready-
to-use functionality for each of the mashup
environments that our framework supports. One
potentially interesting new idea is to add an
abstraction layer that would permit better moni-
toring, analysis, and debugging of randomly
composed services, as well as easier and better
reusability of existing mashups in new contexts.

Our framework is freely available at http://
amico.sourceforge.net.

References
1. Ž. Obrenović and D. Gašević, “Open Source Software:

All You Do Is Put It Together,” IEEE Software, vol. 24,

no. 5, 2007, pp. 86–95.

2. W. Keith Edwards, “Putting Computing in Context:

An Infrastructure to Support Extensible Context-

Enhanced Collaborative Applications,” ACM Trans.

Computer-Human Interaction, vol. 12, no. 4, ACM

Press, 2005, pp. 446–474.

3. G.A. Papadopoulos and F. Arbab, “Coordination Models

and Languages,” M. Zelkowitz, ed., Advances in Com-

puters — The Engineering of Large Systems, vol. 46,

Academic Press, 1998, pp. 329–400.

4. Ž. Obrenović and J. van Ossenbruggen, “Web Browser

Accessibility Using Open Source Software,” Proc. 2007

Int’l Cross-Disciplinary Conf. Web Accessibility (W4A

07), vol. 225, ACM Press, 2007, pp. 15–24.

5. B. Shneiderman, “Promoting Universal Usability with

Multilayer Interface Design,” Proc. 2003 Conf. Univer-

sal Usability (CUU 03), ACM Press, pp. 1–8.

6. A. Sutcliffe and N. Mehandjiev, “End-User Develop-

ment: Introduction,” Comm. ACM, vol. 47, no. 9, 2004,

pp. 31–32.

7. A. Thor, D. Aumueller, and E. Rahm, “Data Integra-

tion Support for Mashups,” Proc. 6th Int’l Workshop

Information Integration on the Web, (IIWeb 07), AAAI;

http://dbs.uni-leipzig.de/file/IIWeb2007_final.pdf.

8. J. Wong and J.I. Hong, “Making Mashups with Mar-

mite: Towards End-User Programming for the Web,”

Proc. SIGCHI Conf. Human Factors in Computing Sys-

tems (CHI 07), ACM Press, pp. 1435–1444.

9. Ž. Obrenović and D. Gašević, “End-User Service Com-

puting: Spreadsheets as a Service Composition Tool,”

IEEE Trans. Services Computing, vol. 1, no. 4, 2008, pp.

229–242.

10. F. Nack et al., “Pillows as Adaptive Interfaces in Ambi-

ent Environments,” Proc. Int’l Workshop Human-Cen-

tered Multimedia (HCM 07), ACM Press, pp. 3–12.

Željko Obrenović is an assistant professor at the Industrial

Design Department of the Technical University Eind-

hoven (TU/e), and he did part of the work reported

here while working at CWI, Amsterdam. His research

interests include human-computer interaction, inter-

action design, end-user programming, and software

engineering. Obrenović has a PhD in computer sci-

ence from the University of Belgrade. Contact him at

z.obrenovic@tue.nl.

Dragan Gašević is a Canada Research Chair in semantic

technologies and an assistant professor in the School of

Computing and Information Systems at Athabasca Uni-

versity. His research interests include the Semantic Web,

model-driven software engineering, service- oriented

architectures, and technology-enhanced learning.

Gašević has a PhD in computer science from the Uni-

versity of Belgrade. Contact him at dgasevic@acm.org.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

