
80 IEEE SoftwarE | publIShEd by thE IEEE computEr SocIEt y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

Henry Ford’s assembly-line
production of the Model T inspired
changes in the automotive industry,
and the software industry has made nu-
merous attempts to apply similar ideas

(for example, see the chapter, “Will the
Real Henry Ford of Software Please
Stand Up” in Robert L. Glass’s book).1
While the assembly-line philosophy is
well known, Ford’s approach to inno-

vation and the process that preceded
the Model T’s production is less so. Be-
tween 1892 and the formation of the
Ford Motor Company in 1903, while
working mostly for the Edison Illumi-
nating Company, Ford built about 25
cars. In the five years after the compa-
ny’s formation, he built and sold eight
models—Models A, B, C, F, K, N, R,
and S— before settling on the Model T.
He tested prototypes labeled with the
11 missing letters. Ford summed up this
experience this way:2

I do not believe in starting to make
until I have discovered the best pos-
sible thing. This, of course, does not
mean that a product should never be
changed, but I think that it will be
found more economical in the end
not even to try to produce an article
until you have fully satisfied yourself
that utility, design, and material are
the best. If your researches do not
give you that confidence, then keep
right on searching until you find con-
fidence.... I spent twelve years before
I had a Model T that suited me. We
did not attempt to go into real pro-
duction until we had a real product.

Today’s automotive industry has
changed significantly since Ford’s ini-
tial success, but some of his philoso-
phy behind innovation still remains.
For example, Toyota’s “nemawashi”
principle states that decisions should be
implemented rapidly but made slowly,
by consensus, and after considering all
options.3 Bill Buxton, who studied in-
novation in the automotive industry,
noted that a new car’s design phase
starts with a broad exploration that
culminates in the construction of a full-
size clay model and costs over a quarter
of a million dollars.4 Only after bring-
ing the new concept to a high level of
fidelity in terms of its form, business
plan, and engineering plan does a proj-

Software
Sketchifying:
Bringing
Innovation
into Software
Development
Željko Obrenović , Software Improvement Group

// Software sketchifying is a software development

activity that stimulates spending more time generating

and considering alternative ideas before making a

decision to proceed with engineering. It’s supported

by Sketchlet, a flexible tool that empowers both

engineers and nonengineers to work with emerging

technologies and explore their possibilities. //

Feature: software tools

 may/JunE 2013 | IEEE SoftwarE 81

ect get a “green light.” After that, it
typically takes a year of engineering be-
fore the project can go into production.

Inspired by general ideas about how
the automotive industry brings innova-
tion into manufacturing, I developed
software sketchifying as an activity to
stimulate and support software stake-
holders to spend more time generating
and considering alternative ideas before
making a decision to proceed with en-
gineering. My view on software sketch-
ifying combines general ideas of sketch-
ing4 and creativity support tools5 with
several existing software engineering
approaches. To support and explore
this view, I developed Sketchlet (http://
sketchlet.sourceforge.net), a flexible,
Java-based tool that empowers engi-
neers and nonengineers to work with
emerging software and hardware tech-
nologies, explore their possibilities,
and create working examples—called
sketchlets—that incorporate these
emerging technologies.

Product innovation and
software engineering
Contrary to the automotive industry,
the software industry has a rich his-
tory of engineering wrong products. Ill-
defined system requirements and poor
communication with users remain top
factors that influence software project
failures.6 Frederick Brooks also noted
that the hardest single part of building
a software system is deciding precisely
what to build.7 He proposed rapid sys-
tem prototyping and iterative require-
ments specification as a way to solve
this problem. Many existing software
engineering methodologies, including
the Rational Unified Process, Extreme
Programming, and other agile software
development frameworks follow itera-
tive and incremental approaches.

However, these approaches have
limitations when it comes to true in-

novation. Although prototyping can let
us cheaply represent and test our ideas,
and iterative and incremental develop-
ment can help further refine our ideas
based on frequent user feedback, nei-
ther approach directly supports the
generation of new product ideas, nor
do they encourage the consideration of
alternatives.

Buxton went further in his critique
of the innovation capacity of iterative,
incremental software development, see-
ing no comparison between software
product design and the development of
new automobiles.4 He argued that in-
novative software projects need at least
a distinct design phase followed by a
clear green-light process before pro-
ceeding to product engineering. He saw
design and engineering as different ac-
tivities that employ different processes
and for which people suited to one are
typically not suited for the other.

software sketchifying
I built on Buxton’s suggestion by intro-
ducing software sketchifying into soft-
ware product development as a comple-
ment to prototyping and engineering.
The sidebar presents a sketchifying ex-
ample scenario of how it might work

in developing software systems for an
automobile.

Software Sketchifying Approach
One key characteristic of this approach
is postponing the main development ac-
tivity for the benefit of free exploration,
following a main principle of creativity:

to generate a good idea, you must gen-
erate multiple ideas and then dispose
of the bad ones.1,4 Another key char-
acteristic is stimulating early involve-
ment of nonengineers. Such users often
have expertise that’s important for un-
derstanding customers and their needs.
More specifically, the example scenario
in the sidebar illustrates several points
about software sketchifying:

•	 The designer’s main activity is ex-
ploration, learning about a problem
and potential solutions and answer-
ing a question about what to build.

•	 Such explorative activity is heuris-
tic, creative, and based on trial and
error, rather than incremental and
iterative. The designer generates
several ideas, most of which will
be rejected. However, this process
yields important lessons and stim-
ulates generation of novel ideas.
These lessons and ideas are the ac-
tivity’s main outcome.

•	 The exploration activity is not
accidental, but disciplined and
systematic.

•	 The exploration is holistic, enabling
designers to reflect on relations
among user issues, software and

hardware possibilities, and the over-
all dynamics of human-computer
interaction. The ideas in the exam-
ple scenario are influenced not only
by software but also by human fac-
tors and problems related to car me-
chanics and equipment.

•	 The exploration enables early user

Neither prototyping nor incremental
development directly support the
generation of new product ideas.

82 IEEE SoftwarE | www.computEr.org/SoftwarE

Feature: software tools

a sketcHiFying scenario
Consider an example scenario with Mirko, an interaction de-
signer at a company that builds software for new generations of
cars with advanced sensing and display technologies. Mirko has
recently joined the company to explore ideas for software appli-
cations that exploit novel opportunities, such as using data from
a car radar, GPS sensors, and links to Web services.

Mirko’s first task is to explore two applications: a system for
warning about the proximity of other cars and a system for pre-
senting news in idle situations, such as waiting for a traffic light.
Mirko isn’t a programmer, nor is he familiar with all the technical
possibilities of modern cars, but he uses a design environment
through which he can access and explore software services and
components related to his task without serious programming.

To understand what’s possible, Mirko first talks with several
of his company’s engineers. They advise him to start by using
a car simulator, which provides a realistic but safe environment
to learn about new automotive technologies. One engineer also
writes a small adapter that connects the car simulator logger to
Mirko’s design tool. This adaptation gives Mirko immediate ac-
cess through a simple spreadsheet-like interface to the simula-
tor data—such as the car’s speed and its distance from the car
in front of it.

Mirko starts a design environment on his laptop and con-
nects it to the simulator. After becoming familiar with the simu-
lator’s possibilities, he turns to his laptop to create a few sketch-
lets, which are simple interactive pieces of software.

Proximity Warning SyStem
To explore the options for implementing a proximity warning sys-
tem, Mirko first considers three presentation modes: graphical,
audio, and haptic (vibration). For graphical presentation, he uses
an editor in his design environment and creates several simple
drawings. Then he opens the properties panel and connects the
variables from the car simulator to the graphical properties of
drawn regions. For example, he creates a sketchlet in which an
image’s transparency dynamically changes as a function of the
distance from the car in front of the driver. He then experiments
with other graphical properties, such as image size, position, or
orientation. He returns to the simulator and tries each alterna-
tive. He also invites a few colleagues to try out and comment on
his ideas.

After exploring graphical options, he proceeds to create audio
sketchlets. He first tries a MIDI-generator service and connects
data coming from the sensor to MIDI note parameters, such as

pitch or tone duration. He also experiments with a text-to-speech
service, generating speech based on the conditions derived from
car data. Finally, he explores using an MP3 player with pre-
recorded sounds. He then goes back to the simulator and tries
these alternatives.

Mirko also wants to try a vibration modality to present naviga-
tion information, which the simulator doesn’t support. He decides
to use a simple trick, starting an application on his mobile phone
that lets his design environment control the phone’s resources,
including its vibrator. Using gaffer tape, he fixes the mobile phone
to the steering wheel and creates several sketchlets that map the
distance from the car in front of him to vibration patterns. Marko
knows it’s not a very elegant solution, but it lets him explore
basic opportunities of this modality with available resources and
little work.

neWS PreSentation
Mirko also plays with some other options related to the applica-
tion for presenting news. He starts a Google news service in his
design environment and creates a simple page that presents an
HTML output of the news service. He then creates a condition for
the page’s visibility so that the news appears as an overlay on
part of the windshield, but only when the car’s speed is zero and
the automobile is not in gear. He also experiments with speech
services that let a user set a news search query by speech.

After finishing his work in the lab, Mirko decides to collect
some real-world experiences and try some of his more promis-
ing sketchlets in a real car. With help from engineers who are
working on testing cars, Mirko gets an extension of his design
environment that uses a Bluetooth connection to a test car’s on-
board diagnostic (OBD) system. With this addition, Mirko creates
a simple setting using his smartphone as a presentation device,
positioned under a windshield. He connects the smartphone to
his laptop, which uses a simple remote desktop client to capture
a part of a screen from his laptop. On the laptop, Mirko is run-
ning the sketchlets that he created in the lab and that are now
connected to the car’s OBD system. He asks a colleague to drive
the car while he observes a situation and videorecords a whole
session for later analysis.

During the process, Mirko constantly interacts with other
stakeholders, regularly presents his findings, and lets clients and
colleagues try out some of his sketchlets. In this way, Mirko is
helping develop new products by providing realistic and tested
ideas before and outside the main development activity.

 may/JunE 2013 | IEEE SoftwarE 83

involvement through simple but
functional pieces of software in the
form of sketchlets.

•	 Working with real systems, such
as the car simulator, car diagnostic
system, and Web services, lets a de-
signer learn about the possibilities
and limitations of software technol-
ogies and create conceptual propos-
als that are more realistic.

Designers generally aren’t engineers
who can program and extend their design
environments. However, they’re part of a
broader community of people who can
help them learn and extend the explora-
tion space on an ad hoc basis. Sketchify-
ing supports this interaction without tak-
ing too much time, thereby empowering
nonengineers to explore emerging tech-
nologies and to test their ideas without
additional help from developers.

Software Sketchifying Tools
To support and explore this approach,
Sketchlet combines elements from tra-
ditional sketching, software hacking,
opportunistic software development,
and end-user development. Sketchlet
builds on the results of the Sketchify
project (http://sketchify.sourceforge.
net), which explored possibilities to im-
prove early design stages and education
of interaction designers.8

Sketchlet has two main roles:

•	 to enable designers to create a num-
ber of simple pieces of software—
sketchlets—as a way to quickly and
cheaply explore software and hard-
ware technologies and their poten-
tial applications, and

•	 to support involvement of software
engineers in short, ad hoc sessions
that give designers realistic pieces
of technologies that might be useful
for design exploration.

Sketchlet lets designers interact di-
rectly with software and hardware

technologies through a simple, intuitive
user interface. To simplify the integra-
tion with these technologies, Sketch-
let combines ideas from opportunistic
software development with techniques
used by hacking and mashup commu-
nities.9,10 A full description of Sketchlet
is out of scope for this article. Two ap-
pendices containing more detail about
how Sketchlet implements the sidebar’s

example scenario are available on-
line at http://doi.ieeecomputersociety.
org/10.1109/MS.2012.71. I also en-
courage readers to download and try
the tool for themselves.

initial sketchlet
applications and results
I’ve developed and applied the ideas
about software sketchifying in three
projects that featured collaboration
among software engineers, interaction
designers, and researchers. In these
projects, interaction designers and re-
searchers were primarily responsible
for creating and evaluating novel con-
ceptual proposals and ideas:

•	 Connect	 &	 Drive	 project (www.
tue.nl/en/university/departments/
i n d u s t r i a l - d e s i g n / r e s e a r c h /
research-programs/user-centered
-engineering/projects/explorations
-in-interactions/connect-drive).
Several researchers used Sketchlet
to explore options for developing
software systems for cooperative
adaptive cruise control systems in
cars, based on Wi-Fi communi-
cation between vehicles and road
infrastructure.

•	 Persuasive	 Technology,	 Allocation	
of	Control,	and	Social	Values	proj-
ect (http://hti.ieis.tue.nl/node/3344).
Sketchlet played a similar role as it
did in the Connect & Drive project,
helping researchers investigate soft-
ware products for developing per-
suasive technologies that encourage
people to hand over control to intel-
ligent automation of cars.

•	 Repar	project (Resolving the Par-
adox; www.repar-project.com).
Sketchlet was one of the flexible
prototyping tools in user-centered
design processes, allowing de-
signers to create and evaluate (ill-
defined) product concepts early in
the development.

Although Sketchlet is still in early
development, the approach and tool
showed several positive effects in these
projects. First, it broadened the op-
portunities to constructively involve
nonengineers, including interaction
designers, psychologists, and students.
Our tools empowered nonengineers
to easily explore relevant technologies
and to independently create and test
their ideas. The companies involved
benefited from their nonengineering
expertise and knowledge early in the
design process.

Sketchlet also promoted different
collaboration between engineers and
nonengineer designers. Prior to us-
ing Sketchlet, most of the companies
followed the approach of making de-
signers responsible for creating a con-
ceptual proposal, which they gave to
developers for implementation with

Sketchlet combines elements from
traditional sketching, software hacking, and

opportunistic software development.

84 IEEE SoftwarE | www.computEr.org/SoftwarE

Feature: software tools

little interaction, except to clarify their
designs. With Sketchlet, the interaction
between designers and engineers could
work in two ways, with engineers giv-
ing designers simplified versions of
software components and services—
early in the design process—that the
engineers might use later in the imple-
mentation (see Figure 1).

The connected services, although
simplified, resemble real components,
and sketchlets expressed in terms of
these services come closer to the imple-
mentation platform that the engineers
will use. This change addressed one
problem that many companies expe-
rience when designers and engineers
need to work together—namely, the
engineers perceive designers’ ideas as
unrealistic, too distant from available
technology, and not precise enough to
be useful. Through the exploration of
these services, designers can develop
more realistic expectations about the
possibilities and limitations of technol-
ogies, and incorporate this understand-
ing into design proposals.

Lastly, Sketchlet influenced the

mindset of companies toward more
and broader explorations early in the
software design. Sketchlet helped illus-
trate the potential of such exploration
and inspire the companies to think how
other tools could be used in a similar
explorative way.

sketchifying benefits
and relation to other
approaches
Software sketchifying can help better
define product requirements so that
the subsequent engineering process has
a clear focus and goal. It promotes di-
rect exploration of emerging technolo-
gies and creation of working examples
of simple pieces of software with these
technologies as a way to identify po-
tential problems and provoke reactions
from users as early as possible. The tool
shows the effects of design decisions on
user experience and supports user test-
ing before actual development starts.

Exploring the possibilities and limi-
tations of technologies early in the de-
sign helps identify a number of prob-
lems or user issues before investing in a

significant development effort. Discov-
ering such problems later in the process
could require changes and additional
effort. Early discovery is particularly
important in projects using emerging
technologies, which have many un-
knowns—including how well users will
accept them.

Promoting the constructive involve-
ment of nonengineers in the design
process opens the door to help from
experts in fields such as human psy-
chology, which in turn reduces the bur-
den on developers. Moreover, as Glass
noted,1 users who understand the ap-
plication problem to be solved are of-
ten more likely to produce innovation
than computer technologists, who un-
derstand only the computing problem
to be solved. The sketchifying approach
requires occasional involvement of de-
velopers, but it aims to incorporate
them in short ad hoc sessions, and the
intent is to empower nonengineers to
explore further without developers’
help. Once the developer adapts some
technology for Sketchlet, nonengineers
can work with this technology through
a simple end-user interface that does
not require technical expertise or pro-
gramming knowledge.

Relation to Prototyping and Engineering
Software sketchifying complements
existing prototyping and engineering
approaches by its focus on free explo-
ration and a trial-and-error approach
versus a more iterative, incremental ap-
proach of prototyping and engineering
(see Figure 2).

Sketchifying supports users in con-
structing a novel idea and enables non-
engineers to actively contribute. This
brings software design closer to the
practice of other engineering disci-
plines, in which the design phase pre-
cedes the main engineering activity,
and designers (usually nonengineers)
are encouraged to freely explore ideas
before consolidating a few of them for

“Classical” model

With Sketchlet
…

Designer Engineer

EngineerDesigner

Conceptual design Implementation

Implementation

Conceptual design

Simpli	ed components
and services, hacks

figure 1. Comparing the classical design-engineering interaction with sketchifying.

With sketchifying, supported by tools like Sketchlet, the interaction between designers

and engineers can work in two ways, allowing engineers to give designers early access to

simplified versions of software components and services that the engineers might use later in

the implementation.

 may/JunE 2013 | IEEE SoftwarE 85

further development. For instance, it’s
not unusual for an industrial designer
to generate 30 or more sketches a day
in the early stages of design, each possi-
bly exploring a different concept.4

Software sketchifying precedes proto-
typing, which tests, compares, and fur-
ther develops aspects of selected ideas.
With a prototype in place, the develop-
ment can take an evolutionary approach.
Prototyping should assess whether se-
lected ideas are feasible and should help
decide whether to proceed with engineer-
ing. Prototyping aims at making an idea
more detailed and concrete, rather than
coming up with radically new ideas. En-
gineering turns the winning idea into a
robust and usable product.

Relation to Other Software Tools
In principle, tools other than Sketchlet
could implement the sketchifying idea.
However, many current tools can’t fully
support it because they’re not opti-
mized for free exploration and involve-
ment of nonengineers. For example,
we could use standard programming
languages, such as Java, C#, C++, or
programming tools oriented toward in-
teraction design such as Flash and Pro-
cessing to implement our example sce-
nario. However, programming requires
significant expertise, time, and effort—
an investment that’s simply too high for
the intended purpose of generating new
ideas and exploring possibilities.

Existing low-fidelity prototyping
environments provide ways to quickly
create prototypes with inputs taken
from external services or sensors.11,12
These environments might be excel-
lent choices for exploring interactions
in various domains. The problems I’m
addressing cross these domains and re-
quire a variety of sensory inputs and
links to diverse software services as
well as additional components specific
to the companies I’m working with. In
addition, such tools often require too
much precise specification, partly be-

cause they’re primarily developed for
advanced prototyping rather than for
free and broad exploration.

Electronic sketching systems are an-
other promising direction for design
tools, enabling designers to create in-
teractive systems with ease using intui-
tive and natural pen gestures.13 From
the viewpoint of my example scenario,
these systems have the drawback of be-
ing specialized for specific domains and
used successfully only in inherently
graphical domains that have a stable
and well-known set of primitives, such
as 2D and 3D graphics or websites.

Another alternative is to use sim-
ple freehand drawings and techniques
such as screen prototyping. Such tech-
niques can help in exploring a solu-
tion’s graphical elements. However,
they can describe overall system inter-
actions, such as sensing device inputs
and user response dynamics, only in
very abstract terms. Moreover, paper

sketching doesn’t let users explore the
possibilities and limitations of emerg-
ing technologies. Direct exploration of
such technologies yields more concrete
ideas about how to best employ them.

Sketchlet borrows ideas from exist-
ing solutions, while trying to overcome
some of their limitations. I also see it as
a complement to existing tools, rather
than a replacement. On several occa-
sions, designers have used Sketchlet in
conjunction with other tools. For exam-
ple, some of our users employed Max
MSP for signal processing and audio
effects and Sketchlet for connections to
sensor devices and visualization.

m y initial experiences with
applying software sketch-
ifying are encouraging.

However, an important limitation of this
approach is that it requires significant
changes of current development culture

Engineering

Prototyping

Sketchifying

Stop further
development

Continue with
engineering

• Iterative, incremental
• Weeks, months
• Requires substantial
 engineering
 involvements

• Explorative, heuristic,
 trial and error
• Hours, days
• May be conducted
 by nonengineers

figure 2. An idealized representation of relationships among sketchifying, prototyping, and

engineering. Sketchifying supports users in constructing a novel idea. It precedes prototyping,

which tests, compares, and further develops aspects of selected ideas. Engineering turns the

winning idea into a robust and usable product.

86 IEEE SoftwarE | www.computEr.org/SoftwarE

Feature: software tools

in its emphasis on postponing the start
of development to benefit free explora-
tion, more active involvement of non-
engineers and end users, and new forms
of interaction between engineers and
nonengineers prior to the main devel-
opment activity. Such changes, in my
experience, aren’t easy to achieve, but
without them, the sketchifying tools
are less effective and tend to be used in
a limited way.

In future work, I plan to develop a
more general approach toward build-
ing software services and components
so that each service could have two
sets of APIs: one engineering API with
full functionality, and one sketchifying

API that would represent a simplified,
limited sample of the full functional-
ity. I also plan to address collaboration
because the current implementation
primarily supports individual use and
is of limited value in collaborative de-
sign sessions.

references
 1. R.L. Glass, Software	Creativity	2.0, devel-

oper.* Books, 2006.
 2. J. Grudin, “Travel Back in Time: Design

Methods of Two Billionaire Industrialists,”
ACM	Interactions, vol. 15, no. 3, 2008, pp.
30–33.

 3. J. Liker, The	Toyota	Way:	14	Management	
Principles	from	the	World’s	Greatest	Manu-
facturer, McGraw-Hill, 2004.

 4. B. Buxton, Sketching	User	Experiences:	Get-

ting	the	Design	Right	and	the	Right	Design,
Morgan Kaufmann, 2007.

 5. B. Shneiderman, “Creativity Support Tools:
Accelerating Discovery and Innovation,”
Comm.	ACM, vol. 50, no. 12, 2007, pp.
20–32.

 6 R.N. Charette, “Why Software Fails,” IEEE	
Spectrum, vol. 42, no. 9, 2005, pp. 42–49.

 7. F. Brooks, “No Silver Bullet—Essence and Ac-
cidents of Software Engineering,” Computer,
vol. 20, no. 4, 1987, pp. 10−19.

 8. Ž. Obrenović and J.B. Martens, “Sketching
Interactive Systems with Sketchify,” ACM	
Trans.	Computer-Human	Interaction, vol. 18,
no. 1, 2011, article 4.

 9. B. Hartmann, S. Doorley, and S.R. Klemmer,
“Hacking, Mashing, Gluing: Understand-
ing Opportunistic Design,” IEEE	Pervasive	
Computing, vol. 7, no. 3, 2009, pp. 46–54.

 10. Ž. Obrenović , D. Gaševic, and A. Eliëns,
“Stimulating Creativity through Opportunis-
tic Software Development,” IEEE	Software,
vol. 25, no. 6, 2008, pp. 64–70.

 11. M. Rettig, “Prototyping for Tiny Fingers,”
Comm.	ACM, vol. 37, no. 4, 1994, pp. 21–27.

 12. Y.K. Lim, E. Stolterman, and J. Tenenberg,
“The Anatomy of Prototypes: Prototypes as
Filters, Prototypes as Manifestations of De-
sign Ideas,” ACM	Trans.	Computer-Human	
Interaction, vol. 15, no. 2, 2008, article 7.

 13. J.A. Landay and B.A. Myers, “Sketching
Interfaces: Toward More Human Interface
Design,” Computer, vol. 34, no. 3, 2001, pp.
56–64.

about the author

Željko obrenović is a technical consultant at Software Improvement
Group, Amsterdam. He did the work reported here while working as an assis-
tant professor in Eindhoven University of Technology’s Department of Industrial
Design. His professional interests include, software engineering, design of
interactive systems, end-user development, rapid prototyping, creativity sup-
port tools, and universal accessibility. Obrenović received a PhD in computer
sciences from the University of Belgrade. Contact him at obren@acm.org.

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator;
Email: manderson@computer.org
Phone: +1 714 816 2139 | Fax: +1 714 821 4010
Sandy Brown: Sr. Business Development Mgr.
Email sbrown@computer.org
Phone: +1 714 816 2144 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Far East: Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East: Ann & David Schissler
Email: a.schissler@computer.org, d.schissler@computer.org
Phone: +1 508 394 4026; Fax: +1 508 394 1707

Southwest, California: Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Southeast: Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

Advertising Sales Representatives (Classified Line and Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 973 585 7070; Fax: +1 973 585 7071

AdvertiSer informAtion • mAY/JUne 2013

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

