
Online Appendix to:
Sketching Interactive Systems with Sketchify

ŽELJKO OBRENOVIC and JEAN-BERNARD MARTENS, Eindhoven University of Technology

Appendix A: Graphics, Animation and Freehand Sketching
in Sketchify

A.1. INTRODUCTION

In this appendix we provide some details on how we implemented (and extended) free-
hand sketching within Sketchify. In the main text, in Section 6.1 we have already de-
scribed the basic functionality of this environment. Here, we do not repeat this general
description, but add more details about those elements of our sketching environment
that we think could be useful for developers of similar systems. In the following sec-
tions, we describe individual components of Sketchify editor, including the following.

—Sketchify’s freehand drawing mode, used to create bitmap images,
—Active regions, used to create a range of interactive effects,
—Events and actions in Sketchify, used to support event-driven definition of

interaction,
—Timers, used to produce advanced dynamic effects,
—Macros, used to group actions,
—Sketchify’s animation support,
—Formulas and templates in Sketchify, and
—Advanced options.

A.2. FREEHAND DRAWING MODE

In Sketchify, designers can create freehand sketches that consist of two types of ele-
ments: inactive elements, also called background images, and active regions (Figure 22).

Background images are created in the Sketchify drawing mode. From the designers’
point of view, the Sketchify drawing mode does not look much different from what
might be expected from other simple image editors, as our environment supports most
standard options for freehand drawing. A designer, for example, can use drawing tools,
such as a brush or eraser, to create drawings. Working with multiple image layers is
supported as well.

A.3. ACTIVE REGIONS

Most interactive effects in Sketchify are defined by means of active regions. An active
region is a rectangular part in the sketch that can display drawings and text, but that
can additionally capture user events and be graphically transformed (with transfor-
mations such as rotation, translation, or perspective mapping). An active region may
embed other sketches that in turn contain background images and active regions.

A.3.1. Creating Images in Active Regions. The images (or drawings) that are associated
with active regions can be created in several ways (Figure 23 and 24).

—By drawing them in the active regions image editor or in an external image editor,
—By importing them from a file or pasting them from the clipboard,

c© 2011 ACM 1073-0516/2011/04-ART4 $10.00
DOI 10.1145/1959022.1959026 http://doi.acm.org/10.1145/1959022.1959026

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–2 Ž. Obrenovic and J.-B. Martens

Fig. 22. The Sketchify image editor supports well-known bitmap image operations and tools, such as a brush
and eraser to create drawings, importing an image from file, or opening the drawn image in an external editor
for more complex image composition.

Fig. 23. Some of the ways to create an image in an active region: (a) extracting it from a background image;
(b) as text or text file; (c) by capturing it from a part of the screen.

—By extracting a region from a background image created in drawing mode,
—By specifying a path or URL to an image file,
—By dynamically capturing them from screen,
—By defining a text to be rendered, or a more complex object including both graphics

and text in a standardized format such as HyperText Markup Language (HTML)
code, or Scalable Markup Language (SVG) code.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–3

Fig. 24. Creating an image in an active region using markup languages: (a) from HyperText Markup
Language (HTML) code; (b) from Scalable Vector Graphics (SVG) code.

Fig. 25. Various forms of perspective graphical transformations of active regions: (a) manually specifying
perspective points; (b) horizontal or vertical 3D rotation derives the perspective points from the specified
angle; (c) a user interface for setting the perceptual depth of regions.

A.3.2. Graphical Transformations of Active Regions. Regardless of how an image is created,
a designer can manipulate and transform such an image using a range of transforma-
tions (Table I). Using mouse or pen, a designer can change the position, size, orientation,
and perspective points of active regions. Additionally, through a more advanced inter-
face, a range of other transformations is also possible, such as changing transparency,
or 3D rotation (Figure 25).

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–4 Ž. Obrenovic and J.-B. Martens

Table I. Some of the Possible Graphical Transformations of Active Regions

A.3.3. Embedding Sketches within Active Regions. Complete sketches, which may them-
selves contain active regions, can be embedded in another sketch through active
regions (Figure 26). Embedded sketches may themselves be active, which means
that they are capturing events, and are updating and reading variables. In or-
der to avoid conflicts between different copies of the same sketch, each embedded
sketch may be assigned a unique prefix and postfix for the variables that it depends
on.

A.4. VARIABLES, FORMULAS AND TEMPLATES

Properties of active regions and sketches can also be specified indirectly through
variables, formulas, and templates. Any property or expression that uses formu-
las and templates will be automatically evaluated when any of the variables in the
formula/template is updated.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–5

Fig. 26. Embedding sketches: the original sketch (a) is embedded twice in another sketch through two active
regions (b).

Fig. 27. Using string templates to set region properties. In this example, the template “Rotation is <%=rot%>
degrees” is used to define the region text. The text will be refreshed and evaluated each time when the variable
“rot” is updated.

A.4.1. Formulas. A designer can use formulas to derive values using diverse operators
and functions, for example, what follows.

—=rot * 3, where the output value is calculated by multiplying the value of the variable
“rot” by a factor of 3,

—=sqrt(a∧2 + b∧2), where the value calculated is the square root of a sum of squares
of values from variables “a” and “b”.

All common arithmetic operators are supported, as well as the conditional if
operation.

A.4.2. Templates. Templates are a simple way to compose larger pieces of text by al-
lowing variable names to be replaced by variable values, which are converted to text
strings (Figure 27).

A.5. EVENTS AND ACTIONS

Sketchify enables an event-based description of interaction, where a designer can define
the response to a range of interaction events (Table II). For each of these events one or
more actions can be triggered (Table III).

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–6 Ž. Obrenovic and J.-B. Martens

Table II. Sketchify Events

Table III. Sketchify Actions

A.6. ANIMATION

Sketchify supports several ways to define animated effects, including:

—Flip-book-like animation,
—Properties animation, and
—Animation using timers (described in Section 7).

A.6.1. Flip Book Animation. Sketchify flip book animation is analogous to traditional flip
book animation. A designer can create several image frames in an active region, and
then animate them by defining the exposure time for each of the frames. A flip-book-
like animation effect is created by looping through the images adopting the specified
timing (Figure 28).

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–7

Fig. 28. Flip book animation in Sketchify. An active region can contain more than one image (drawn or
imported). The (relative) exposure time for each of these images can be specified. A flip-book-like animation
effect is created by looping through the image using the specified timing.

Table IV. Defining Properties for the Animation of an Active Region

In this example, two properties, rotation and transparency, are animated in a loop between their
minimum and maximum values, with a cycle duration of 1 second.

A.6.2. Properties Animation. Sketchify supports simple animations for any of the nu-
meric properties of sketches and active regions (see Table I for some of them). To define
such animations, only few parameters need to be specified:

—Type of animation, which can be loop or pulse (once or forever),
—Start and end values of the property,
—Cycle duration, and
—Optional time curve.

For example, Table IV illustrates simultaneous animation of the rotation and trans-
parency of an active region.

To simplify definition of this type of animations, we also provide an interface for
interactively exploring various animation effects (Figure 29).

A.7. TIMERS

Timers facilitate the definition of more complex animation and interaction effects. A
timer can cycle more than once, or work as a “pulsar” (a value increases from its
minimum value to its maximum value in the forward cycle, while it decreases in the
backward cycle). Timers introduce two elements:

—A timer variable interpolator, and
—A timeline with events.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–8 Ž. Obrenovic and J.-B. Martens

Fig. 29. A user interface for defining animation properties. In this example, each of the active region’s
transformation properties (such as position, rotation, transparency, perspective) can be animated by defining
animation type, duration of the animation cycle, start and end values, as well as an optional time curve.

Fig. 30. A timer interpolator. During the timer cycle, the interpolator continuously changes one or more
variables from their start to end values, and for each variable a different timer curve can be used.

A.7.1. Timer Variable Interpolator. Timer interpolators enable continuous updating of nu-
meric variables (Figure 30). Timer interpolators are essential for animation effects. For
example, we can define a timer with a cycle duration of 60 seconds and a resolution of
one update per second to update the variable “orientation” from 0 to 360 degrees. This
variable can, for instance, be used to control the orientation of an active region that
simulates the handle of a clock.

Mapping between time and variable values can also be nonlinear, using timer curves
(Figure 31). Timer curves enable nonlinear mappings between actual time and variable
values in timers. When no timer curve is specified, the timer changes variable values
linearly from start to end value. With a specified timer curve, however, the value
transitions can have variable speed, for example, progressing fast at the beginning and
slowing down at the end. A timer curve is defined independently from the timer itself.
A timer can use a default timer curve which is used for all variable updates, but it can
also use different curves for individual variables.

A.7.2. Timer Timeline and Events. Timer events enable a designer to define discrete
events on the timer timeline (Figure 32), and associate one or more actions with such

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–9

Fig. 31. Relation among timers, timer curves, and variables.

Fig. 32. Timer events: a designer can define a discrete point on the timeline, and define one or more actions
that will be called when this point in time is reached during the timer execution.

an event. Points on the timeline are defined between 0 and 1, which means relative to
the duration of the timer.

A.8. TRAJECTORIES

Sketchify exploits gesturing not only as a drawing modality, but also as a way to define
a range of interactive effects. If a trajectory is defined for a region, the motion of
that region is constrained to the sketched path. A designer can define primary and
secondary trajectories as well as primary and secondary trajectory points for each
region. If only one (primary) trajectory is defined, the region will be rotated to ensure
that both region trajectory points stay on the trajectory (Figure 33(a)). If both primary
and the secondary trajectories are defined (Figure 33(b)), the region will be rotated
to ensure that the primary point stays on the primary trajectory, while the secondary
point stays as close as possible to the secondary trajectory. This enables defining a
range of simple mechanical simulations.

While defining the primary trajectory, the timing of the gesture is also recorded and
made available as a template timer curve (Figure 34; also see the previous section).

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–10 Ž. Obrenovic and J.-B. Martens

Fig. 33. Controlling the motion of the active region with trajectories: (a) when only a primary trajectory
is defined, the region is rotated so that both identified points stay on the trajectory; (b) when a secondary
trajectory is defined, the region is rotated so that the first point stays on the primary trajectory, and the
second on the secondary trajectory.

Fig. 34. Sketchify can record the trajectory of an active region. The resulting time curve can be used in the
definition of timers and animations.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–11

Table V. Control Structures in Sketchify Macros

Fig. 35. Macros in Sketchify: (a) a built-in macro called on the sketch entry event; (b) a simple shared macro
with conditional update of a variable.

A.9. MACROS

Sketchify macros enable creating more complex actions by grouping simpler ones (see
Table III for list of available actions). In essence, a macro is a complex action with a list
of successive commands that are triggered by a single event. Macros can include pauses
in between actions, which facilitates control over dynamic effects (Figure 35(a)). Macros
also support simple control structures (Table V), enabling the definition of conditional
executions, loops, or synchronizing executions with variable updates (Figure 35(b)).

A.10. ADVANCED OPTIONS

Sketchify supports some advanced options, such as inherited sketches and mapping of
a sketch to multiple display surfaces.

A.10.1. Sketch Inheritance. In order to support a more generic definition and reuse of
existing sketches, we have introduced the concept of sketch inheritance. When one
sketch inherits another, it automatically takes over its background image, its active
regions, and all its settings. New elements and active regions can subsequently be
added. As a special case of sketch inheritance, we also support the concept of a master
sketch, which, if it exists, is inherited by all sketches (Figure 36).

A.10.2. Mapping Design Space to Display Space. When a sketch is executed, it will by
default open in the same screen as the one it was created in, with a size that is
identical to the one used in the design mode. However, we also offer the possibility for
a more complex mapping between the design space and (one or more) display surfaces.
More specifically, several display windows may exist at the same time, and for each of
these display windows we can specify the part of the designed sketch that is shown in
it. A transformation that can combine translation, scaling, rotation, and sheering can
be applied (Figures 36 and 37). In this way a designer can use one sketch to control
several displays by mapping different parts of the sketch to each display. This support
may, for instance, be important when designing augmented reality applications, where

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–12 Ž. Obrenovic and J.-B. Martens

Fig. 36. A master sketch (a) defines a background image and active regions that are inherited in all other
sketches (b, c, d) that add additional graphical elements and active regions.

Fig. 37. Mapping design space to display space. A sketch can be presented on one or more screens, where
for every screen we can define which part of the sketch is shown and how it is to be transformed.

several presentation spaces are often combined, such as a tabletop projection and a
wall projection.

The mapping of design space to presentation space can also include image filters
(Figure 39), as well as changes in the shape and transparency of the presentation
window. Defining the shape and transparency of the window can be useful when a
designer wants to combine Sketchify sketches with the visual output of existing appli-
cations without having to modify these latter applications.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–13

Fig. 38. Sketchify presentation pipeline. A selected region of the sketch is clipped, image filters are subse-
quently applied, and the filtered image is rendered using in perspective. The resulting image is presented in
a window with a specified shape and transparency.

Fig. 39. A Sketchify sketch can be presented in windows with different shapes and transparencies, and
overlaid on top of existing application windows.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–14 Ž. Obrenovic and J.-B. Martens

Appendix B: Variables and Blackboard Implementation Details

B.1. INTRODUCTION

One of the most challenging implementation issues of Sketchify was coping with the
complexity imposed by the requirement for integration of diverse components and en-
vironments. We had to solve many technical problems before we could combine the
large variety of systems that were never meant to work together or even to be reused.
In order to connect diverse elements, Sketchify uses middleware that is based on
a loosely coupled blackboard coordination model, which in turn borrows ideas from
context-enhanced collaborative applications and notification services [Edwards 2005;
Obrenovic and Gasevic 2007; 2009]. Notification services are publish-and-subscribe in-
frastructures that allow applications to publish data items to zero or more subscribers.
Often, these subscribers are applications that have registered to receive notifications.
Such infrastructures are popular in collaborative applications and context-aware com-
puting. For example, the Elvin system [Fitzpatrick et al. 1999] is a well-known pure
notification service (without data storage), applied successfully to a number of collab-
orative applications. The Lotus PlaceHolder system [Dey 1999] is another notification
service, which additionally incorporates a persistent data store that can be used by
applications to manage shared data; changes to this data by any client result in noti-
fications that are generated to other interested clients. A number of data repositories
have models similar to these notification services. For example, tuplespace systems
such as Linda [Gelernter 1985], the iROS [Johanson et al. 2002], and JavaSpaces and
Jini [Waldo 2000] allow applications to store untyped tuples (collections of named data
elements) in the model.

For Sketchify, we used the implementation of this model in the Adaptable Multi-
Interface Communicator (AMICO) middleware,21 which has, for instance, been used
successfully before to cope with the diversity of components in an application domain
such as an interactive television [Obrenovic and Gasevic 2007]. One of the innovations
in the Sketchify middleware which makes it suitable for the integration of many differ-
ent components is the availability of a huge number of software integration interfaces.
Sketchify middleware supports low-level socket-based networking interfaces, as well
as many higher-level interfaces such as HTTP, XML-RPC, Open Sound Control (OSC),
or SOAP. This facilitates reuse of existing services and components, as they do not
have to be adapted to a common interface. Instead, the adaptation can be made using
technology that is already supported by the component. The middleware is extendable
and allows to easily add new service interfaces.

In this appendix, we describe the following elements of our middleware:

—the basic middleware functions,
—a number of available integration mechanisms,
—the user interface for working with variables,
—filtering and serialization of variables and the derivation of aggregate variables,
—the embedded Web server and the JSP engine.

B.2. MIDDLEWARE FUNCTIONS

Our middleware can be viewed as a blackboard system containing a list of variables
[Obrenovic and Gasevic 2007]. Variables are untyped data objects, allowing the infras-
tructure to be very simple because the data model is highly generic. The infrastructure
doesn’t need to know the semantics or structure of the data it stores, which simplifies
applying it to a wide range of applications. New applications can use existing data in

21http://amico.sf.net/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–15

the model and add their own without conflicting with the infrastructure. All variables
are placed in the same address space. The Sketchify middleware supports several func-
tions common for message-oriented systems: UPDATE a variable, GET the value of a
variable, REGISTER for notifications about a variable update, and DELETE a vari-
able. To simplify the implementation of service adapters on top of this functionality,
these functions are implemented in a fault-tolerant way: an update of a nonexisting
variable creates a new variable, requests for a nonexisting variable returns an empty
string rather than an error. We therefore do not introduce explicit actions for creating
variables: variables are created by their first update in the a similar way as in the case
of dynamically typed languages.

B.3. INTEGRATION MECHANISMS

One of the main innovations of Sketchify middleware is its ability to open up its
basic functionality (update, get, register, and delete) through a huge number of service
interfaces. These interfaces are needed to connect to other services and development
environments. Most existing platforms provide integration mechanisms with many
more constraints, and adapting software to work with such integration mechanisms
can constitute a significant effort. We can group the interfaces that are being offered
into three types.

—Loosely coupled service-oriented interfaces,
—Tightly-coupled plug-in interfaces,
—Auxiliary user-interface integration modules.

These interfaces are currently used to integrate software services, spreadsheets, and
other environments.

Sketchify supports low-level TCP and UDP interfaces, where applications can update
or read variables by exchanging string messages with our middleware, as well as many
higher-level interfaces such as HTTP GET/POST, XML-RPC, OSC, or SOAP. For each
of these interfaces, we developed adapters that map updates of variables to service
calls and results of services to updates of variables (Figure 40). Our platform can be
extended and allows for the addition of new service interfaces. This enables reuse of
existing services and components, as they do not have to be adapted to a common
interface, that is, adaptation can be made using the technology of the component, and
developers can chose the interface they are most familiar with. We provide various
data adapters for each of the service interfaces. For example, for handling SOAP-based
XML data structures, we enable defining XML adapters. For XML-RPC and OSC and
other service interfaces, we define mappings between variables and string equivalents
of basic data types (such as integer or char) used by these interfaces.

When component code is not available, we enable limited integration of components
through their user interfaces. We support three types of such interfaces.

—Command line interfaces, which we used to work with image processing tools, script
editors, and to send a path to a spreadsheet file. Users can configure our environment
and can use any of the programs that receive command line arguments and make
calls based on variables updates.

—A keyboard and mouse simulator that can map variable updates to keyboard and
mouse events.

—A screen capturer that can capture part of the screen at frequent time intervals, and
that can save the result into a file, updating a variable with the corresponding file
name.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–16 Ž. Obrenovic and J.-B. Martens

Fig. 40. Communication interfaces available within the integration infrastructure with some of the used
components [Obrenovic and Gaswevic 2007]. The infrastructure currently supports a wide range of commu-
nication interfaces such as XML-RPC, OSC, URL, and SOAP, as well as many application-specific adapters
(a). (b) and (c) show fragments of Java code for updating variables in the infrastructure using the XML-RPC
and OSC interfaces, respectively. (d) and (e) show fragments of the adapter’s configuration files for mapping
variable updates into XML-RPC method calls and OSC messages, respectively.

B.4. USER INTERFACE FOR WORKING WITH VARIABLES

Sketchify variables can be accessed through a spreadsheet-like interface, making all
data immediately visible and manipulable. For example, updating the value of the
variable “tts-input” will cause the text-to-speech engine to pronounce the typed text.
Results of various components will be visible as variable updates, such as a speech-
command variable that represents the recognized speech. Through this interface the
designer can directly observe and update variables, and this kind of interaction is very
useful to explore and play with the functionality of software services. It can also serve
as a Wizard-of-Oz backbone, where a human operator can update variables to simulate
events in an environment.

In order to update and read variables within spreadsheets and scripts, designers
have to write specific functions, which we used to define extensions. For example, to
import a variable into a spreadsheet, we use the SKETCHIFY READ formula, with the
variable name as a parameter. This way of working is, however, slow and introduces
a lot of errors due to misspelling of variable names. Therefore, in later versions of
our tool, we included a pop-up menu that operates on the list of variables, and that
allows to copy mathematical expressions with these variables to the clipboard, after

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–17

Fig. 41. User interface for working with variables. A user can modify the value of a variable, can add
new variables, and can copy to the clipboard expressions that involve variable names, such as spreadsheet
formulas or script expressions.

which they can be pasted into the spreadsheet or scripting environment (Figure 41).
This modification has greatly reduced the number of errors and has improved the
acceptance of the Sketchify tool. The variables also play a crucial role in creating a
unified conceptual model of our loosely coupled framework, as a designer can work
with very different elements and services in a similar way.

B.5. FILTERING, SERIALIZATION AND AGGREGATION OF VARIABLES

Filtering, serialization, and aggregation of variables are all aspects that serve to con-
trol the dynamics of the interaction (Figure 42). One of the problems we were facing,
especially with software services, is that we were integrating components with very
different timing characteristics. For example, some sensors can update variables more
than fifty times per second, while spreadsheets are not able to process data this fast. To
circumvent such problems, we introduced the concept of a “count filter.” For example, a
count filter of 10 means that we will process every tenth update of a variable, ignoring
the other nine. Sketchify furthermore enables serialization of variables, which means
that sequential updates of a single variable are mapped to a sequence of new variables.
Aggregate variables, in turn, are obtained by applying statistical functions on inter-
nally serialized variables. In this way, we can, for example, obtain a running average
or standard deviation of a variable.

B.6. WEB SERVER AND JSP ENGINE

Sketchify also embeds a fully functional Web server and Java Server Pages (JSP)
template engine, extended with support for reading and updating of Sketchify

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–18 Ž. Obrenovic and J.-B. Martens

Fig. 42. Serialization and aggregation of variables. With serialization, a sequence of (child) variables are
updated in response to the update of a single (parent) variable. For example, the first update of the parent
variable will create and update variable “v1”, the second update will create and updated variable “v2”, and
so on. Aggregate variables are derived by applying mathematical function on a sequence of variables.

variables. In this way, a designer experienced in Web markup languages, such as
HTML, Scalable Vector Graphics (SVG), or VRML, can write simple declarative tem-
plates for generating content that can be visualized in a Web browser. Figure 43 gives
a simple example or a VRML page that represents a simple box, where the X com-
ponent of the box size is taken from the variable “a”. This support is convenient for
more advanced prototyping. All that is needed to make this functionality available is to
create or import a file describing a Web page in the same directory as the sketches. The
designer will be offered the option to open this file in a Web browser (see Figure 43(c)).

Appendix C: Sketchify End-User Development Tools

C.1. INTRODUCTION

Sketchify provides access to several end-user programming tools that can help de-
signers to define more complex interaction behaviors in their sketches. We currently
support OpenOffice.org CALC spreadsheets, as well as several higher-level scripting
languages including Javascript, Python, BeanShell, Groovy, Ruby, TCL, Sleep, Haskell,
and Prolog.

C.2. SPREADSHEETS

Spreadsheets were included in Sketchify by means of add-ins for OpenOffice.org CALC
and Microsoft Excel [Obrenovic and Gasevic 2008]. From the end-user point of view the
add-ons constitute only a few additional functions that are accessible as spreadsheet
formulas (Table VI).

The introduced functions allow users to update or read all variables of any service
connected to Sketchify. For example, the expression SKETCHIFY WRITE(“spelling”;
B10) is evaluated every time when cell B10 is updated, and calls the Google spelling

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–19

Fig. 43. Example JSP page.

checker service (which is triggered by updating the Sketchify variable “spelling”); while
expression SKETCHIFY READ(“spelling-suggestion”) obtains the current value of the
variable “spelling-suggestion”, which is updated by the Google spelling checker adapter.
Reading a variable once also registers an application for notifications about future
changes of this variable.

Spreadsheets run as separate process and connect to our middleware through TCP
and UDP interfaces.
C.3. SUPPORT FOR SCRIPTING LANGUAGES

Scripting languages are relatively easy to learn by developers as they use typeless
approaches to achieve a higher level of programming. This tends to result in much more
rapid application development than when using low-level programming languages.
However, there is a huge diversity of scripting languages, each being supported by a
significant community. Therefore, instead of choosing one specific language, we decided
to support most popular scripting languages, including:
(1) Javascript, a dynamic, weakly typed prototype-based language,
(2) Python, a very high-level programming language supporting multiple program-

ming paradigms (object oriented, imperative, and functional),
(3) BeanShell and Groovy, two Java-based scripting languages,
(4) Ruby, a dynamic, reflective, general-purpose object-oriented programming

language,

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–20 Ž. Obrenovic and J.-B. Martens

Table VI. Spreadsheet Extensions and Their Corresponding Functions

Function
SKETCHIFY WRITE(<variable-names>,<values>)
Updates Sketchify variables with the specified values (returns the same value, or the last value in
case a range of cells is specified).
SKETCHIFY READ(<variable-name>)
Registers for notifications of a Sketchify variable with a given name and updates the spreadsheet
every time when a new value is received. Our spreadsheet extension creates a thread that listens
for notifications of registered variables, and propagates the received values to the spreadsheet
formulas that use this value.
SKETCHIFY WRITE DELAYED(<variable-names>, <values>, <delays>)
Updates Sketchify variable(s) with given values, after (a) given delay(s). For example,
SKETCHIFY WRITE DELAYED(“A”, “test”, 2.5) will update the variable A with the value “test”
after 2.5 seconds. SKETCHIFY WRITE DELAYED(A1:A10, B1:B10, C1:C10) will update vari-
ables with names defined in cells A1 to A10, with values defined in cells B1 to B10, with delays
defined in cells C1 to C10 (i.e., the function will first wait for a period defined in C1 and then
update a variable with the name defined in cell A1 with the value from cell B1, then it will wait for
a period defined in cell C2 before updating variables with the name defined in cell B2, and so on).
The function returns the values as they are updated (in our example, it returns B1, B2 ... B10).
SKETCHIFY READ LOOP(<variable>,<cell-or-row>,<cel/row-id>,<start-value>,<end-value>,
<step>)
Maps sequential updates of a Sketchify variable into a spatial update of spreadsheet cells. Up-
dates are performed incrementally within a given row or column, with a given step. For example,
SKETCHIFY READ LOOP(“var1”, “column”, “A”, 5, 10, 1), will map updates of variable var1 to a
range of cells; the first update will update cell A5, the second update to A6, etc.

Fig. 44. Examples of scripts written in Javascript and Prolog. Both scripts produce the same effect: sending
the result of a spelling suggestion Web service to a local text-to-speech service when the variable “spelling-
suggestion” is updated.

(5) TCL, a popular tool command language,
(6) Sleep, a procedural scripting language inspired by Perl and Objective-C,
(7) Haskell, a standardized purely functional programming language with nonstrict

semantics, and
(8) Prolog, a logic programming language.

Except for the support for Prolog, which is based on the JLog project,22 all script-
ing support is based on the Java Scripting Project.23 Our middleware runs scripting
engines for each of these languages, extending each language with functions for updat-
ing and reading variables (i.e., functions UPDATE and GET). To receive notifications
about variable updates (i.e., the REGISTER function), a script needs to contain a hook
function called variableUpdated (see Figure 44(a)), which can be called by the middle-
ware when a given variable is updated. For Prolog, which is a nonprocedural scripting
language, we introduced special predicates for updating, reading, and receiving notifi-
cations about variable updates (see Figure 44(b)).

22http://jlogic.sourceforge.net/
23https://scripting.dev.java.net/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–21

We also support XSLT scripts implemented using standard Java XML libraries.
These scripting extensions allow developers to use (a mixture) of different program-
ming modes, such as declarative programming, object-oriented programming, or logic
programming, when creating their services.

Appendix D: Simplified Software Services within Sketchify

D.1. INTRODUCTION

In this appendix we list the major simplified software services that have up to now
been included within Sketchify. Our software services are real but “trimmed down”
input/output devices and services that have been extracted from diverse domains.
Such services can bring components from various domains within reach of designers,
and allow them to incorporate real functionality within a design already at an early
stage, without requiring programming skills on the side of a designer. The obvious
advantage of this is, of course, that the designer and potential end-users can develop a
better “feel” for the application being designed.

Currently supported software services include camera-based face and motion detec-
tors, text-to-speech engines and speech recognizers, VRPN devices (such as 3D trackers
and buttons), MP3 and MIDI players, Web services (such as a Google spelling checker
and search engine), a Wordnet definition service, and many others. Figure 45 lists
these services, and provides references to sections in this appendix where each of these
software services is described. For each software service, we describe the designer in-
terface towards these services, which consists of one or more variables connected to the
service. Source-code examples for many of these services are available as part of our
open-source package.24

D.2. SPEECH SERVICES

In order to enable sketching of speech-enabled interactive systems, Sketchify has been
connected to several open-source Text-To-Speech (TTS) engines and speech recognizers,
including an English speech recognizer based on Sphinx-425 the FreeTTS English TTS
engine,26 the NEXTENS Dutch TTS engine,27 and the Mary TTS engine that currently
supports English, German and Tibetan.28 The preceding table illustrates the variables
being used to connect to FreeTTS and to the Sphinix-4 systems.

� = read by the service (parameters of a service); � = updated by the service (results of a service)

24http://sketchify.sf.net/
25http://cmusphinx.sourceforge.net/sphinx4/
26http://freetts.sourceforge.net/
27http://nextens.uvt.nl/
28http://mary.dfki.de/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–22 Ž. Obrenovic and J.-B. Martens

Fig. 45. Sketchify’s simplified software services, interfaces used to connect to the variables, and section
numbers were each service is described.

D.3. WEB SERVICES

Our platform also allows to connect to various Web services, including the Google SOAP
search service and spelling checker,29 Google News search HTTP RSS Web service,30

Yahoo Babel fish HTTP HTML translation service31 the Flickr image uploader32 and
the Alexa statistical Web service.33 Our platform allows for easy adaptation to other
Web services.

29http://code.google.com/apis/soapsearch/
30http://news.google.com/
31http://babelfish.yahoo.com/
32http://www.flickr.com/services/api/
33http://aws.amazon.com/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–23

D.4. PHIDGETS

Phidgets34 is a system consisting of low-cost electronic components and sensors that
are controlled by a personal computer, connected to the PC using the Universal Serial
Bus (USB). Phidgets consists of a set of plug-and-play building blocks for low-cost
USB sensing and control from your PC. Our adaptation is based on the Phidgets Java
API.

34http://www.phidgets.com/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–24 Ž. Obrenovic and J.-B. Martens

D.5. SERIAL PORTS AND ARDUINO

Sketchify can receive and send data to serial ports, enabling designers to work with
devices and platforms such as Arduino.35

Other Sketchify variables can be directly updated from a serial port if the data are
written in a format “var=value”.

D.6. SEMANTIC SERVICES

We also support two links to semantic services: a Wordnet definition service36 and
ConceptNet,37 a common-sense reasoning framework.

35http://www.arduino.cc/
36http://wordnet.princeton.edu/
37http://web.media.mit.edu/∼hugo/conceptnet/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–25

D.7. MUSIC SOFTWARE SERVICES

We currently support two music output tools: an MP3 music player based on the jlGUI
open-source Java MP3 player,38 and a MIDI player implemented using standard Java
audio libraries.

D.8. COMPUTER VISION SOFTWARE SERVICES

We have adapted several computing vision modules, based on the OpenCV Computer
Vision Library39 including a motion detector and a face detector.

D.9. WII REMOTE

Wii Remote,40 which connects to a PC using a Bluetooth link, is a complex sensing plat-
form. It can track infra-red sources, and contains three acceleration sensors, various
buttons, a vibrator, a simple speaker, and some status LED diodes. It can also be used

38http://www.javazoom.net/jlgui/jlgui.html
39http://opencvlibrary.sourceforge.net/
40http://en.wikipedia.org/wiki/Wii Remote

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–26 Ž. Obrenovic and J.-B. Martens

to connect more devices, such as Wii Nunchuk, which contains a joystick and more
buttons. Other related devices, such as Wii Fit, can also be used. Our Wii software
service is based on the C# demo programs that come with WiimoteLib.41

41http://www.codeplex.com/WiimoteLib

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify App–27

D.10. JAVAME MOBILE PHONE SOFTWARE SERVICES

Many mobile phones support the Java Platform Micro Edition (Java ME,42) which
provides programmers with access to phone resources. We have developed several
mobile phone software services using standard JavaME libraries, including a GPS
sensor service, a photo capturer, an SMS messenger, and a controller for the mobile
phone vibrator.

D.11. VRPN MODULES

The Virtual Reality Peripheral Network (VRPN,43) is a programming library that im-
plements a standardized and network-transparent interface between application pro-
grams and physical devices used in Virtual-Reality (VR) systems (such as 3D trackers).
Any available VRPN device can be connected to our platform. For example, we have
been using the Intersense IS-600 tracker,44 an infrasonic sensor that tracks the posi-
tion of objects in 3D. It can track several objects at the same time, and for each object
in can detect its position (x, y, z), and when used in combination with the inertial cube,
also its orientation.

42http://java.sun.com/javame/technology/
43http://www.cs.unc.edu/Research/vrpn/
44http://www.isense.com/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

App–28 Ž. Obrenovic and J.-B. Martens

D.12. PST OPTICAL TRACKER

The optical tracker of Personal Space Technologies (PST,45) can track 3D objects that
are tagged with infrared markers.

D.13. TUIO DEVICES

Sketchify can also work with applications that support TUIO protocol.46 Such applica-
tions can track several objects or cursors and send data about their state. This means
that Sketchify can receive input from tangible multitouch surfaces (such as iPhone or
iPad), or from vision-based multiobject tracking systems (such as reacTIVision,47).

D.14. FACE EXPRESSIONS

We support a simple face expression animation module based on the Expression
toolkit:48 an open-source procedural facial animation system. In our adaptation, the
face animation runs in a separate window, and through variables a designer can set
basic and complex facial expressions as well as define the “mood” of the character.

45http://www.ps-tech.com/
46http://www.tuio.org
47http://reactivision.sourceforge.net/
48http://expression.sourceforge.net/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

