
4

Sketching Interactive Systems with Sketchify

ŽELJKO OBRENOVIC and JEAN-BERNARD MARTENS, Eindhoven University of Technology

Recent discussions in the interaction design community have called attention to sketching as an omnipresent
element of any disciplined activity of design, and have pointed out that sketching should be extended beyond
the simple creation of a pencil trace on paper. More specifically, the need to deal with all attributes of a user
experience, especially the timing, phrasing, and feel of the interaction, has been identified. In this article,
we propose extending the concept of sketching with a pencil on paper to the more generic concept of fluent
exploration of interactive materials. We define interactive materials as any piece of software or hardware
that represents or simulates a part of the interactive user experience, such as input from sensors, output
in the form of sound, video, or image, or interaction with Web services or specialized programs. We have
implemented the proposed concept within Sketchify, a tool for sketching user interfaces. Sketchify gives
designers the freedom to manipulate interactive materials by combining elements of traditional freehand
sketching with functional extensions and end-user programming tools, such as spreadsheets and scripting.
We have evaluated Sketchify in the education of interaction designers, identifying both successful aspects
and aspects that need further improvements.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces;
D.2.2 [Software Engineering]: Design Tools and Techniques—User interfaces; H.1.2 [Models and Prin-
ciples]: User/Machine Systems

General Terms: Design, Theory

Additional Key Words and Phrases: Sketching, interaction design, user interface software tools, design
process, rapid prototyping

ACM Reference Format:
Obrenovic, Ž. and Martens, J.-B. 2011. Sketching interactive systems with sketchify. ACM Trans. Comput.-
Hum. Interact. 18, 1, Article 4 (April 2011), 38 pages.
DOI = 10.1145/1959022.1959026 http://doi.acm.org/10.1145/1959022.1959026

1. INTRODUCTION

Sketching is at the heart of design. Many studies of the design practice, such as recent
contributions from Buxton [2007], Krippendorff [2006], and Moggridge [2007], have
called attention to sketching as an omnipresent element of any disciplined activity of
design. Disciplines such as graphical design and architecture can boast a rich tradition
in sketching, and offer courses to students in order to improve their sketching skills.
However, for interaction designers who want to design new user interfaces, existing
sketching techniques are too limited. Buxton has argued that while it is relatively easy
to sketch the physical shape of an interaction device or the graphical layout of a user
interface, interaction designers lack tools that enable them to sketch the dynamics of
the interaction, let alone the overall user experience [Buxton 2007]. For example, pencil

This work was supported by the Innovation-Oriented Research Programme ‘Integral Product Creation and
Realization (IOP IPCR)’ of the Netherlands Ministry of Economic Affairs, Agriculture and Innovation.
Authors’ addresses: Ž. Obrenovic (corresponding author) and J.-B. Martens, Eindhoven University of Tech-
nology, The Netherlands; email: z.obrenovic@tue.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1073-0516/2011/04-ART4 $10.00

DOI 10.1145/1959022.1959026 http://doi.acm.org/10.1145/1959022.1959026

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:2 Ž. Obrenovic and J.-B. Martens

and paper provide few means to sketch speech interaction, or to illustrate interaction
scenarios in domains such as ambient intelligence, tangible interaction, multimodal
interaction, or pervasive computing.

The identified issue of lack of tools for sketching is also confirmed by our own ex-
perience in the education of students of interaction design. Based on these practical
experiences and on our understanding of existing theoretical contributions, we intro-
duced a novel approach and tool for sketching, adopting two main premises.

—The primary objective of interaction designers in the early design stage is clarifying
the user experience and the associated user-system interaction [Moggridge 2007].
Interaction designers (and students) need better techniques than those currently
available for sketching such experiences and interactions. As in the case of traditional
sketching, these techniques need to combine speed and freedom of expression, and
need to assist in producing an output that invites discussion.

—Sketching should be extended beyond the simple creation of a pencil trace on pa-
per to deal with important attributes of the overall user experience, especially time,
phrasing, and feel [Buxton 2007]. Some aspects of specifying interactive system be-
havior are beyond freehand drawings and we need tools that can seamlessly integrate
sketching with more traditional (end-user) programming techniques.

To support and explore our view, we have developed Sketchify, a tool that implements
our extension of paper and pencil sketching to the more generic concept of fluent ex-
ploration of interactive materials. Interactive materials can be any piece of software
or hardware that represents or simulates a part of the interactive user experience,
such as input from sensors, output in the form of audio, video, or drawings, or interac-
tion with Web services. Through the manipulation of interactive materials, designers
create interactive sketches, which are rough illustrations of the interaction scenarios
or interaction techniques that they have in mind. With our tool designers can, for in-
stance, combine elements of freehand sketching with end-user programming, such as
spreadsheets or scripting, needed in order to create an intelligent system behavior.

Figure 1 provides a very simple example of an “interactive sketch” created with our
tool. This example was created by one of our students to illustrate the working of
an “intelligent window,” where a user can see what is going on in another room by
“cleaning” the window with a hand gesture. To create this sketch, a motion detector is
used, where the intensity of motion is mapped to the transparency of the image that
represents the window. This example illustrates several important aspects of our tool.
Firstly, a sketch, as we define it, need not be restricted to a drawing, but can incorporate
any component that helps the designer to develop and show his idea about interaction,
provided that this can be realized in a quick and timely fashion, and that such a sketch
is inexpensive, disposable, and doesn’t contain unnecessary details. Secondly, our tool
allows the designer to sketch the experience that some interaction scenario will bring
to a user by enabling a user, as well as the designer himself, to immediately try out
the intended interaction. While a drawing can, through lines and text, illustrate how
the interaction will occur, it is more insightful and convincing to actually experience
how the transparency of the image changes, that is, how the window “opens,” as a
result of the user gesture. Lastly, we are primarily interested in supporting interaction
designers whose main objective is to design the dynamics of the interaction [Moggridge
2007]. The image in our example is secondary; what is important is the change of
that image. In other words, in this example the designer is primarily interested in the
development of the mapping from the user gesture to the image transparency as this,
rather than the image itself, may be expected to have a major influence on the user
experience.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:3

Fig. 1. In this example, a camera-based motion detector is used to estimate the intensity of the hand motion.
The transparency of the window changes in response to the estimated motion intensity.

In the next section we introduce an example scenario to clarify how we envision
sketching in the context of designing novel interactive systems. Next, we present some
existing software tools for sketching and prototyping and discuss why, in our view,
they offer only partial solutions to the requirements imposed by this scenario. From
Section 4 onwards we introduce Sketchify, our toolset for sketching interactive sys-
tems. We describe its architecture and its implementation, discuss its benefits and
limitations, and compare it with existing solutions. We conclude with a summary of
our contributions and with plans for future work.

To improve readability of the text, we have moved most implementation details into
four online Appendices (A, B, C, and D). For readers interested in trying out Sketchify,
we provide an open-source version of the program, together with some introductory
videos.1

2. EXAMPLE SCENARIO

To illustrate our vision about sketching in the context of the design of interactive
systems, we introduce an example scenario, with Anne in the role of a student of
interaction design. Our scenario is based on an analogy to “traditional” paper and
pencil sketching, where a designer quickly draws up ideas, reflects on them and makes
changes, creates variations, and discusses them with colleagues.

Anne is a student at the department of Industrial Design, and she is working on
her final bachelor project. Her goal is to design an “intelligent coffee machine”: ICoM,
a context-aware system that, in addition to making hot drinks, senses the presence
of people, and has secondary functions such as providing ambient music and lighting.
She has already done user surveys, and has identified, in general terms, the desired
functionality of the system. Specifically, she has concluded that ICoM should support
the following functions:

—Detect the presence of users, and classify their distance from ICoM in two categories.
When one or more persons are within the vicinity of the machine, the system should

1http://sketchify.sf.net/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:4 Ž. Obrenovic and J.-B. Martens

“express interest” in these people, and when a person comes close to the machine,
the system should “become serious” and offer a menu with available hot drinks.

—When no one is close to the system, it should switch into behaving as an “ambient
box,” providing a discrete lighting and music.

Anne now starts to define the behavior that ICoM should have in order to support the
identified functionality. She opens her interactive “sketchpad” and starts to “sketch”
elements for the first part of the functionality. Her sketchpad enables her to easily
and quickly explore and work with various devices and sensors. Anne does not have a
lot of experience in working with sensing equipment, but she is aware of the general
possibilities offered by sensors, and that detecting the presence of people, which is
required for her scenario, can be achieved in several ways. She, for example, could
consider using RFID sensors, but this would require users to wear RFID tags, which
is probably unrealistic, so she rejects that option. Another possibility would be to use
pressure sensors on the floor or a camera-based computer-vision sensor. Her sketching
tool, for example, offers her an option to integrate a Wii Fit pressure sensor.2 She
decides to play with this option, and borrows the Wii Fit Balance Board device from
the faculty service desk. She connects the device to her computer through a Bluetooth
link, and starts the Wii module in the sketchpad. Her sketching environment offers
her a simple interface towards the device and various ways to control and visualize
data coming from and going to the device. By inspecting this interface, she sees that,
amongst others, the Wii Fit device updates four variables, each representing different
areas in which the user may be standing. She tries the device herself, observing how the
data changes when she stands on it. This immediately gives her another idea: the Wii
Fit does not only detect the presence of people in front of the ICoM, but also potentially
allows alternative ways of interacting, by stepping or balancing on different parts of the
board. Using the freehand sketching extension of her tool, she quickly creates several
drawings representing various screens of the coffee machine, such as an entry screen,
and a screen for selecting the coffee type and amount of sugar. Her environment enables
her to define transitions between these drawings as a function of sensor variables, and
she quickly creates a simple interactive sketch, where a user can select a coffee type
and amount of sugar by balancing on the Wii Fit board.

She saves the last sketch, and explores some other options for detecting the presence
of people. She attaches a Web camera to her computer, and tries camera-based motion
and face detection. The face detector seems to be more promising, as it can tell how
many people are in front of the screen, and the face size can roughly indicate how close
they are to the machine. As the face detector does not tell Anne the distance of people
directly, she has to derive it. Her environment offers her a variety of programming
options, but as she is not an experienced programmer, she decides to use a spreadsheet
and to import the variables for face size within it, estimating the distance by dividing
the face size by some factor. To obtain this factor, she simply tries which face size
the sensor gives when she stands at different distances from the Web camera. She
now reuses some freehand drawings from her first sketch, and creates an interactive
scenario, where different screens appear depending on the estimated distance of the
user. When the user is close enough he can select drinks and other options by clicking
on them. She also creates a version where options can be selected by means of head
motions, but quickly sees that this is not an intuitive way of interaction, and does not
pursue it further.

To add more diversity to her ideas, she also creates several versions of the navigation
interface, creating one version where a user selects hot drink options by speech, using

2http://www.nintendo.com/wiifit/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:5

a speech recognizer and a text-to-speech engine available within the sketchpad. She
also creates a version of her sketches that connects to the Google News search Web
service, so that the user can read the news on the ICoM display while waiting for a
drink to be prepared.

To define the second part of the functionality, where ICoM works in the “ambient
box” mode, she uses the MP3 player extension available within her sketching platform,
and creates a simple timer that starts the playback of a music item in a list of MP3
files after some predefined time of inactivity.

Now having several sketches and variations of her ideas ready, she calls some of her
colleagues to try out and discuss these “sketches” before she consolidates her design
decisions and starts to create more advanced and polished prototypes with which she
intends to test the usability and user appreciation of her ideas.

3. EXISTING SOLUTIONS

Our example scenario illustrates the need for a simple yet powerful design environment
that can offer integrated use of various elements, including sensing devices, graphical
editors, and Web services. In this section, we describe some existing solutions, and
discuss their possibilities as well as their limitations when it comes to supporting
applications such as the one described in the example scenario. We start with sketching
on paper, paper prototyping, and screen prototyping, before proceeding to more complex
solutions such as electronic sketching and platforms for the rapid prototyping and
programming of interactive systems.

3.1. Sketching on Paper, Paper Prototyping, and Screen Prototyping

To illustrate her ideas about the interaction with the coffee machine, our protagonist
Anne could have created freehand drawings. As most students, Anne has developed her
drawing skills through courses offered at the department of industrial design. Such
courses also cover aspects of communicating the dynamics of interaction by means
of graphical elements such as arrows, textual annotations, or comic-like sequences of
images [Olofsson and Sjölén 2005]. Existing software programs such as Photoshop,
Painter, or Gimp can assist Anne in this task, as they support free-form sketching
using metaphors based on conventional tools, such as, pen, pencil, eraser, or brush.

She could also extend her drawings towards paper prototypes, which have been
used successfully in the design of many interactive products, including computer-based
applications, mobile devices, and Web sites [Grady 2000; Rettig 1994; Snyder 2003].
In such prototypes, all elements of the interface are sketched, and arrows are used to
connect the screens and to communicate the interaction paths that result from a user
activating specific interaction elements [Pering 2002].

Anne could make her drawings more interactive using screen prototyping techniques,
importing, for example, her images into tools such as Microsoft PowerPoint,3 Balsamiq,4
Pencil,5 or OmniGraffle,6 and animating series of screens to simulate possible paths
of interaction (we discuss more advanced programming techniques, such as Flash, in
Section 3.3).

Paper sketches and screen prototypes can be created with ease and they can be very
effective in a number of situations. However, they can help Anne only in a limited way.
She can easily create the graphical elements of her solutions, such as the shapes that
will be shown on the screen, and she can simulate the sequence of these paper sketches,

3http://office.microsoft.com/powerpoint/
4http://www.balsamiq.com/
5http://www.evolus.vn/Pencil/
6http://www.omnigroup.com/applications/OmniGraffle/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:6 Ž. Obrenovic and J.-B. Martens

but overall interaction, where sensing devices and the dynamics of the responses are
also taken into account, can be described only in very abstract terms. Moreover, as Anne
is not experienced in working with sensing technologies, paper sketching does not allow
her to explore the possibilities and limitations of such technologies. Through exploring
technologies, she can get more concrete ideas about how they may be employed best.
In this respect paper-based sketches cannot help her either.

3.2. Electronic Sketching Systems

In contrast to paint programs, where sketching is used to create images, electronic
sketching systems let the user sketch using an electronic pad and stylus and interpret
the user’s strokes in order to create a semantic representation of the sketch [Igarashi
and Zeleznik 2007]. Computer graphics researchers have developed a range of such
systems. Starting from Sutherland’s seminal work on Sketchpad [Sutherland 1963],
several pen-based systems with varying target domains have been proposed to date.
Some examples include SketchCAD [Kara and Shimada 2007], a system for the rapid
creation of free-form curves and surfaces, SketchIT [Stahovich 1998], a system for
creating technical drawings, the SKETCH system for sketching 3D scenes [Zeleznik
et al. 1996], and the “sketching reality” system, used for converting freehand sketches
into realistically looking models [Chen at al. 2008]. Systems such as Teddy [Igarashi
et al. 1999], Vteddy [Owada et al. 2003], SmoothTeddy [Igarashi and Hughes 2003],
and ShapeShop [Schmidt et al. 2005] allow creating even more complex 3D shapes,
such as shapes of animals or human anatomy. Gestures can also be used to define
animation, such as in the system for articulated figure animation [Davis et al. 2003],
the Motion Doodles system [Thorne et al. 2004], or the K-Sketch system [Davis et al.
2008].

In the domain of user interfaces, there exist several similar systems. SILK [Landay
1996] is an electronic sketching tool for the early design of graphical WIMP-based user
interfaces. SILK enables a designer to draw graphical interface elements and attempts
to recognize widgets in the sketch, automatically generating a default behavior for the
recognized widgets. Using SILK, a user interface designer can create storyboards to
illustrate transitions between sketches. DENIM [Lin et al. 2000] is another electronic
sketching tool aimed at supporting early Web interface design. In a similar way as with
the storyboards in SILK, a designer can sketch navigational links from source widgets
to destination pages. DEMAIS is a multimedia sketch-based editor [Bailey et al. 2001],
which, in addition to structuring pages and defining the navigation structure, also
enables the use of dynamic media such as audio, video, and animation. The system in-
cludes a sketch-based, interactive multimedia storyboard tool through which behavior
can be quickly edited using gestures that are part of an expressive visual language.

Sketch-based systems are a promising new direction for design tools, enabling design-
ers to create interactive systems with ease, using intuitive and natural pen gestures.
The drawback of sketch-based systems, from the viewpoint of our example scenario, is
that all of the described electronic sketching tools are specialized and domain specific,
and have been successfully used only in inherently graphical domains that have a sta-
ble and well-known set of primitives, such as 2D and 3D graphics, WIMP interfaces, or
Web sites. Anne, for example, could use DENIM to create the forms and the transitions
between the forms that take place when a customer is making his coffee selection, but
for other elements of her solution she would have to resort to alternative tools.

3.3. Platforms for Rapid Prototyping of Interactive Systems

Another path that Anne could pursue is to actually try to implement a simplified
version of her system using rapid prototyping and development tools.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:7

Some existing low-fidelity prototyping environments provide ways to quickly create
prototypes where inputs can be taken from external buttons or sensors. Examples
include Switcharoo for physical interactive products [Avrahami and Hudson 2002],
Calder and Phidgets7 for physical interfaces [Greenberg and Boyle 2002; Lee et al.
2004; Greenberg and Fitchett 2001], Buck prototyping for mobile devices [Pering 2002],
rapid prototyping for mobile devices using augmented reality technology [Nam and Lee
2003], DART for augmented reality systems [MacIntyre et al. 2004], d.tools for phys-
ical prototyping [Hartman et al. 2006], Topiary for prototyping of location-enhanced
applications [Li et al. 2004], Outpost [Klemmer et al. 2001], and Activity Studio for
prototyping of ubicomp applications [Li and Landay 2008].

These low-fidelity prototyping environments may be an excellent choice for explo-
ration of interactions in various domains. The domain that Anne is addressing, how-
ever, somehow crosses these domains, and requires a variety of sensory inputs and
links to outside services.

There are more professionally integrated environments that can be used to develop
complex interactive applications. For example, Max/MSP8 and the family of related
patcher programming languages such as Pd, Max/FTS, ISPW Max, Max/MSP, or jMax,
provide a graphical development environment for music and multimedia. The Max pro-
gram, for example, is highly modular, with most routines existing in the form of shared
libraries. Through these libraries, various input and output modules can be used. There
also exist research platforms such as EyesWeb9 that support the development of real-
time multimodal interactive applications, especially those using expressive gestures.
OpenInterface10 is another such platform, aimed at a component-based development
of multimodal applications. These systems can enable a designer to define a range of
effects using an easy to understand flow-chart metaphor. However, such systems limit
a designer in several ways. While they may be efficient to use in specific domains,
such as music or video, their usage in other domains may not be straightforward. In
addition, they often require too much precise specification, partly due to the fact that
they are primarily developed for advanced prototyping rather than for sketching.

Anne could consider general -purpose programming languages, that is, higher-level
languages such as Flash or Processing, or fully featured languages such as Java or C++.
In hands of a skilled programmer such languages are powerful tools, and they provide
lots of support and libraries for implementing all aspects of our interaction scenario.
Programming, however, is usually not appropriate in the early stages of development,
and most interaction designers are not skilled programmers in the first place. Even if
Anne were an experienced developer, programming of her system would still require
significant time and effort. Such investment is simply too high for the intended purpose,
which is the generation of new ideas and the exploration of interaction possibilities.

3.4. Summary of the Limitations of Existing Solutions

Existing solutions provide a broad set of possibilities for development of interactive
solutions, and they introduce a range of new ideas and inspirations for development of
new design tools. Many of these ideas have significantly influenced and inspired our
approach. However, having in mind our goals, and summarizing our overview of the
existing solutions, we can make the following observations.

7http://www.phidgets.com/
8http://www.cycling74.com/
9http://www.infomus.org/EyesWeb/EywPlatform.html
10http://www.openinterface.org/platform/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:8 Ž. Obrenovic and J.-B. Martens

—Lack of (integrated) tools: there are currently no tools capable of supporting the diver-
sity of technologies and design issues required in our example scenario, especially
not if we add the requirement that such tools need to support rapid, sketch-like
interaction.

—Specialization and limited extensibility of tools: there are lots of specialized tools
and pieces of software that can cover aspects of the desired sketching functionality,
but they cannot be used easily in an integrated way. Extending a particular tool
towards using it in another domain can be very time consuming and expensive and
is moreover not always feasible (especially for tools that are not open source).

We can add two additional factors that influence and limit the broader adoption of
existing tools by interaction designers.

—The diversity of users: interaction designers have very diverse backgrounds and ex-
pertise, and most of them are not developers or programmers. Many existing tools
require a level of expertise that goes beyond what can be expected of most interac-
tion designers. As more and more (industrial and graphical) designers are entering
the field of interaction design, this aspect can be expected to become increasingly
important. This can results in better and more compelling systems and interactions,
as diverse designers can bring into a design process unique expertise and insights,
but we need to provide them with appropriate technologies to effectively prototype
and interactively sketch their ideas.

—Technology evolution: interaction design is a domain where the technological base is
changing rapidly, and designers need constantly to learn new technologies and tools.
One of the consequences is that even if we create a design tool that can address all
identified technical issues and the diversity of designers, this tool may soon become
obsolete [Myers et al. 2000]. So the capability of integrating diverse tools may be
more important than the functionality of the tools themselves.

4. SKETCHIFY: SKETCHING AS FLUENT EXPLORATION OF INTERACTIVE MATERIALS

In this section we present the basic idea and the principles behind Sketchify, an exten-
sible toolset for sketching interactive systems.

4.1. Design Goals

The starting point for our work has been the ongoing discussion about the role of
sketching in interaction design, especially the need to extend sketching from the cre-
ation of a pencil trace on paper towards dealing with other important attributes of the
overall user experience, such as timing, phrasing, and feel [Buxton 2007]. We aimed at
building a tool that can support designers in sketching novel interactive systems, and
in doing so, we adhered to the following design principles.

—Focus on supporting design of the overall user experience, especially the dynamics of
the interaction. Our main goal was to enable the designer to rapidly define sketches of
interactive scenarios. This is expected to benefit both the designer and potential end-
users, as they can experience the intended interaction at a much earlier stage in the
design process, that is, well before extensive and detailed prototyping is attempted.
We especially aimed at facilitating the definition of the dynamics and timing of such
interactions.

—Support the exploration of possibilities and limitations of relevant technologies. We
wanted to help designers to gain insight into new technologies through hands-on ex-
perience, so that they can develop more realistic expectations about the possibilities
and limitations of the technologies they were considering. We chose to bring actual

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:9

samples of such technologies into the design space and to let designers use them as
part of their sketches.

Having in mind the limitations of existing solutions, and in order to address the diver-
sity of designers and the pace of technology change, we also kept some additional goals
in mind.

—Support more diversity and extensibility. We aimed at providing a palette of alterna-
tive solutions from which designers can chose those elements that best match their
skills and tasks. Meanwhile, we aimed at our solution being open in the sense that is
should be relatively easy to add new tools and environments as they arise. This point
of view was inspired by existing findings on how interaction designers actually use
their tools. Stolterman et al. [2008] for example, described an interaction designer
as a craftsperson,

“someone who picks and chooses tools freely based on the situation and grounded in a judgment of
overall benefits from using a specific tool. . . . ‘benefits’ have to do with so diverse aspects as the time
available, the level of skill and mastery required, external pressure about standards, personal style
of expression, etc.” [Stolterman et al. 2008].

—Provide orchestration and synergetic use of tools. A crucial challenge when supporting
sketching is how to provide coordination between the diverse tools that are available
to stimulate the development of ideas. We kept the fluidity of sketch-based interaction
in mind during development of the interaction with our own tool.

—Better support for reuse of existing environments. Instead of focusing on building yet
another (specialized) sketching tool which could soon become outdated, we aimed
at supporting designers in reusing their existing tools11 and skills. Several design
studies have indicated that interaction designers use rather different tools than the
ones that HCI researchers are currently building [Stolterman et al. 2008; Stolterman
2008].

4.2. Conceptual Model

Sketchify implements our concept of fluent exploration of interactive materials by
combining several existing and proven approaches, including freehand sketching, end-
user programming, and I/O services. Figure 2 illustrates the conceptual framework of
Sketchify. It distinguishes two groups of components.

—Tools that help a designer to create or bring into a design space interactive mate-
rials and services, for instance, through connections to simplified input/output (I/O)
software and hardware services or links to external prototyping environments.

—Tools that enable a designer to sketch interaction by rapidly assembling these inter-
active materials, using freehand sketching, various forms of end-user programming,
or paradigms already supported in available tools.

4.3. Integration and Variables

To integrate all elements of our solution, and to enable their orchestration and syn-
ergetic use, we applied a loosely coupled coordination model, where all elements of
Sketchify communicate indirectly by exchanging messages through a centralized repos-
itory of variables. Alternatively, the tools can also communicate through files and

11To get a brief impression about the number of such available tools, visit www.dexodesign.com/2008/11/07/
review-16-user-interface-prototyping-tools/, for a list of user interface prototyping tools, or ACM Transactions
on Graphics Web site (tog.acm.org/resources/Software.html), for a comprehensive list of computer graphics
software tools.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:10 Ž. Obrenovic and J.-B. Martens

Fig. 2. Sketchify combines free-hand sketching with support for state transitions and animation, end-
user programming, and I/O services. Sketchify also offers the possibility to exchange information with
existing software environments and simple hacking techniques. Blackboard architecture of globally available
variables is used to connect all elements.

through the system clipboard. Sketchify runs a blackboard server with a simple repos-
itory of named slots, called variables, enabling external applications to update and
read variables using one of the many available communication interfaces. We reused
components from the Adaptable Multi-Interface COmmunicator (AMICO) project (see
Appendix B for details) to implement this server. Variables provide a simple and uni-
form abstraction mechanism, enabling a designer to work with very diverse elements
using the same set of operations. Properties of sketch elements, such as their position
or transparency, or user actions such as item selections, can be mapped to blackboard
variables. Spreadsheets or scripts can subsequently read, process, and update these
variables. I/O services can receive arguments and send back results through such vari-
ables (Figure 3). Lastly, through extension mechanisms other platforms can update,
read, or register for the notification of variables.

Our main motivations for using this abstraction were flexibility and simplicity. Un-
typed data structures, similar to our variables, have been widely used in other domains
where heterogeneous applications need to work together [Edwards 2005]. In its basic
ideas, the Sketchify middleware is similar to other loosely coupled and notification
architectures, such as Elvin [Fitzpatrick 1999], and Lotus PlaceHolder [Dey 1999], as
well as to tuplespace systems such as Linda [Gelernter 1985], iROS’s EventHeap co-
ordination layer [Johanson et al. 2002], and JavaSpaces [Freeman et al. 1999; Waldo
2000].

Sketchify variables are also easily manageable by end-users, as the concept of
a single-address variables space is already familiar to many users through sys-
tem variables and properties tables. This is confirmed by our initial studies with

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:11

Fig. 3. An example of the communication among diverse elements of Sketchify through variables. In this
example, a speech recognizer updates the variable “speech-command” with the recognized word. Within a
spreadsheet, this variable is read, and the variable “tts-input” is updated in response. Update of this latter
variable is propagated to a text-to-speech engine that pronounces the given text.

less-experienced users and students, which showed that such concept is indeed easy
for them to understand. By simply reading, writing, and modifying the variables in
a spreadsheet-like interface, users can, for example, directly try out and explore the
basic functionality of interactive services without the need for advanced programming
skills.

One of the main limitations of the Sketchify middleware is that variables can only
contain textual data, and Sketchify modules cannot exchange images or binary objects
through variables. However, it is possible to “hack” around these limitations by ex-
changing links to image files through variables, or by serializing graphical objects with
textual or XML representation, as Sketchify can render an HTML and SVG encoded
content.

In addition to exchanging messages through variables, tools can also communicate
through files and through the system clipboard. For example, our freehand sketching
environment saves graphical elements of sketches into image files that can subse-
quently be opened in most existing image manipulation programs. Through the system
clipboard, images or text can be copied between our environment and many others.

5. INTRODUCING INTERACTIVE MATERIALS

We currently support three groups of tools that help designers to bring interactive
materials into the design space, that is, I/O services, links to external development
environments, and simple hacking techniques.

5.1. I/O Services

With I/O services, designers can introduce in their sketches real but “trimmed down”
functionality of input or output devices and software components from various do-
mains. We have incorporated many different services within Sketchify, including text-
to-speech engines and speech recognizers, Web services (such as the Google spelling
checker and search engine), Phidgets, Arduino, semantic services (such as the Wordnet
definition service), camera-based face and motion detectors, MP3 and MIDI players,
Wii Remote, and many others. Appendix D provides a complete list of the I/O services
that are currently supported by our platform.

I/O services can bring within the reach of the designer a huge number of avail-
able software and hardware components. In order to accomplish this, we build on
our previous work for integrating heterogeneous software components, where we used

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:12 Ž. Obrenovic and J.-B. Martens

Table I. Two I/O Services from the Domain of Speech Interaction, and the Variables They Use

The designer sees and interacts with these services only through these variables, while Sketchify
hides the complexity of the service execution.

a service-oriented approach12 to connect components written in different languages
[Obrenovic and Gasevic 2007]. In essence, our I/O services are stand-alone applica-
tions that Sketchify runs as background processes, and which connect to Sketchify
through one of the many supported network interfaces, updating, and reading vari-
ables. Our services are simplified as we usually do not map the full functionality of the
component, but only its most representative parts.

From the designer’s point of view, Sketchify offers a simple interface to start and
stop services, hiding the complexity and diversity of technologies that an I/O service
may use, and providing a simple and uniform variable-based interface towards them
(Table I). In this way, we can bring components from various domains within the reach
of the designer, allowing a designer to directly experience possibilities and limitations
of technologies without relying on programming skills.

5.2. Links to External Development Environments

Another way to bring into a design space examples of interaction modalities is to
reuse components and examples from environments that are already used for the
development of interactive systems. Many existing development and rapid prototyping
platforms enable designers to define elements for user interaction. Such platforms come
with lots of existing examples that can provide a good starting point for the exploration
of novel interaction scenarios. In order to allow the designer to exploit the potential
of these platforms, we currently support links towards several of them, including the
following.

—Max, MSP and Jitter,13 a high-level graphical environment for signal processing and
music creation. The support of this platform for hardware devices and signal pro-
cessing, for instance, is highly appreciated by our design students. This environment
has been integrated using a Max/MSP Java extension mechanism that allows con-
necting Sketchify using Java network libraries. More specifically, we introduced two
expressions, one for reading Sketchify variables, and another one for updating them.

—EyesWeb14 is a platform for interactive video processing. We integrated the environ-
ment using existing EyesWeb network components.

—Flash is an environment for the creation of interactive and animated (Web) applica-
tions. It is especially popular because of its powerful interactive graphics support. We
created a simple library that builds on Flash XML/TCP support in order to connect
Flash applications to Sketchify.

12We define a software service as a self-contained functional unit in which service consumers interact with
the service through a well-defined interface. In this model, the consumer does not know (or care) “how” the
service implements the requested action, only that the service performs “what” is defined by its published
interface.
13http://www.cycling74.com/
14http://www.infomus.dist.unige.it/EywIndex.html

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:13

Fig. 4. Connecting the EyesWeb (a) and Max/MSP (b) and (c) environments with Sketchify.

—Programming languages such as Processing, Java, C++, and C# are also supported. In
these cases we created simple libraries on top of existing support of these languages
for TCP and UDP protocols.

In all cases, we have extended the environments with remote access to the Sketchify
variables, enabling external applications to interactively read and update these vari-
ables. For example, Figure 4(a) shows a screenshot of an EyesWeb example that pro-
cesses human motion in real time, detecting the position and the center of gravity of a
human body within the picture. Using an EyesWeb network sender component enables
us to export the result of this processing by means of updates of Sketchify variables.
In this way, we have been able to create sketches that illustrate how human motion
can be used in interaction, for example, to control a character in a game or to control
the playback of music in an MP3 player. Figure 4(b) shows another example where
an interactive control from the Max/MSP environment is used to update Sketchify
variables. In this case, the MIDI keyboard control updates the variable “max-note”
with a number representing the note being pressed. The available links between the
development platforms and our blackboard of variables allow a designer to use the
development paradigms supported by the former tools while manipulating elements of
his solution. For example, Figure 4(c) shows how the Max/MSP flow-chart syntax can
be used to define the behavior illustrated in Figure 1. In this example, we first read the
Sketchify variable “motion-intensity,” process it with Max/MSP expressions, and send
the result of the processing back to Sketchify, updating the variable “transparency.”

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:14 Ž. Obrenovic and J.-B. Martens

Fig. 5. Using screen capturing in combination with screen poking to illustrate a new interaction with a car
navigation system. A part of the Sketchify sketch on the first screen dynamically captures part of the second
screen, where a Web browser with the Google Maps application is running. Mouse clicks on the graphical
regions in the sketch are mapped to mouse clicks in the application on the second screen, to zoom in and out
and to move the map.

While our main goal has been to bring already existing functionality of development
environments into the design space of Sketchify, designers could also use Sketchify as
a supplement to such development environments, using Sketchify to add elements that
these platforms do not support themselves, such as a text-to-speech engine or a speech
recognizer.

5.3. Simple Hacking Techniques

To integrate pieces of software that do not have a programmable API and are not avail-
able as open-source components, we support some of the techniques used by hacking
and mashup communities [Hartmann et al. 2008]. Sketchify includes several of such
mechanisms, such as the following.

—Screen scraping, a technique based on parsing of a rendered user interface to gather
data. In Sketchify, we enable designers to analyze and extract any part of a Web page
in HTML or XML (such as RSS) formats.

—Screen capturing, a technique to dynamically bring any part of the screen as a part
of the sketch, including output of video players. In Sketchify, such captured part can
be manipulated and transformed as any other graphical object.

—Screen poking, a technique based on generating synthetic mouse and keyboard events
computationally.

For example, Figure 5 illustrates using screen capturing in combination with screen
poking, created by one of our students to illustrate a new interaction with a car nav-
igation system. Two regions within the Sketchify sketch shown on the first screen
dynamically capture part of the second screen, where an interactive map is shown in
a Web browser. Mouse clicks on specific graphical regions in the sketch are mapped to
mouse clicks for the application shown on the second screen. These mouse clicks are
used to navigate through the map.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:15

6. MANIPULATING INTERACTIVE MATERIALS THROUGH FREEHAND SKETCHING
AND END-USER PROGRAMMING

As discussed, we provide several ways for manipulating interactive materials, including
freehand sketching and various end-user programming paradigms. The main innova-
tion in our support for freehand sketching and end-user programming is adding the
link to Sketchify variables. Through this link, elements of freehand sketches, spread-
sheet formulas, or script code can obtain access to various input and output devices,
outside services, etc. On top of that, we also introduce specific support for controlling
the dynamics of the interaction.

We first describe our freehand sketching environment, and then our support for
end-user programming. Appendix A provides more details about the former, while
Appendix C gives more details about the latter.

6.1. Freehand Sketching

With our support for freehand sketching, we want to exploit the freedom and ex-
pressiveness of pen-based gesturing. Our freehand sketching environment serves two
functions. First, it facilitates the creation of the graphical elements that are part of
an interactive solution. Second, it plays a key role in defining the dynamics of the
interaction through sketch transitions, capturing of user events, and graphical trans-
formations. Especially the latter aspect needs some explanation, as it is the most novel
element of our solution.

From a designer’s point of view, the environment looks very similar to a simple image
editor, with additions for working with variables and with support for specialized tools,
such as timers, which are useful when controlling the dynamic behavior of the inter-
action. Our environment supports standard options for freehand drawing, including
setting stroke parameters, such as width and color. Our platform offers a limited num-
ber of colors and image manipulation options as this was considered to be sufficient in
the conceptual stage of design. However, Sketchify can be configured so that, with a
single mouse click, a user can open a sketch image in a more advanced image manip-
ulation program, such as Adobe Photoshop. Next to the main drawing layer, we also
provide an annotation layer, where designers can draw on top of the main sketch with-
out affecting it. This latter feature is expected to be especially useful when discussing
a sketch, with other designers or end-users.

Our freehand sketches consist of two types of elements: inactive elements (also called
background images) and active regions (Figure 6). A background image is created by
means of pen strokes or can be imported from an image file. An active region is a
rectangular part of the sketch that can contain drawings, text, or images. Active regions
can capture mouse (or pen) events and can update variables in response to such events.
They can also be graphically transformed (translated, rotated, skewed) in response to
updates of variables.

6.1.1. Defining Interaction through Transitions among Sketches. One way of defining interac-
tion within Sketchify is by creating transitions between sketches. Linking sketches and
defining conditions for transitions between them is a key functionality of our system. In
its simplest form, Sketchify can define transitions in the same way as screen prototyp-
ing tools do, that is, in response to mouse clicks and keyboard events. Figure 7(a), 7(b),
and 7(c) illustrate this by means of a simple example that consists of three sketches,
each representing one screen of the interface.15 The start screen (a) has two active
regions that respond to mouse clicks. When a user clicks on the first (top) or second
(bottom) active region a transition is initiated to sketch (b) or sketch (c), respectively.

15The example is based on the flip-book animation illustration from Buxton [2007, page 299].

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:16 Ž. Obrenovic and J.-B. Martens

Fig. 6. An example of a freehand sketch created with Sketchify. In this example the sketch contains a
background image, created with our freehand drawing tool, and three active regions that capture user
mouse events and present additional graphics.

The second sketch (b) also has one active region, enabling the user to return to the
start screen (a). The system automatically generates and displays a state transition
diagram, which helps the designer to get an overview of the available sketches and
the possible transitions between them (d). State transition diagrams are similar to the
storyboards used in electronic sketching systems, but in our approach they are a side
result of sketching, that is, they are created without requiring any explicit action on
the part of the designer.

6.1.2. Presenting Variables through Active Regions. The support for state transitions, as
described in the previous section, only allows the sketching of interaction at a relatively
high level, where each interaction state is identified by an individual sketch. Through
the combined use of active regions and variables, however, an individual sketch can
also become “alive” and animated.

Active regions can be used to dynamically visualize data as we can control many
properties of such active regions through variables, including their textual label, the
path to the image file that they are associated with, or their geometrical properties such
as position, orientation, and size. Figure 8(a) shows how the values of four numerical
variables, which are updated in response to calculations that are performed within
a spreadsheet, are converted into textual labels for active regions that are part of a
freehand sketch. Figure 8(b) illustrates how the position of a face, as estimated by a
face detector, can be mapped to the position of an active region.

Active regions can be constrained in terms of their maximum and minimum position
and orientation. It is also possible to constrain the motion of an active region to a
sketched trajectory. When such constraints are imposed, the position of the region
can also be specified in relative terms, stating, for example, that the region should be
positioned midway along the trajectory. An active region can also signal overlap with
other regions and can trigger variable updates accordingly. In this way, dragging one

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:17

Fig. 7. Simple example that illustrates sketching with state transitions. The start screen (a) has two active
regions that capture mouse clicks. When a user clicks on the first active region (top) a transition to the
second sketch (b) initiates, while a click on the second region initiates a transition to sketch (c). The second
sketch (b) also has one active region, enabling the user to return to the start screen (a). Transitions can also
be triggered by variable updates (e), while a transition to a sketch can cause the update of a variable (f).

active region on top of another one may, for instance, trigger the transition to another
sketch.

6.1.3. Updating Variables based on User-Triggered Events. Active regions can update vari-
ables in response to user actions, that is, they can react to characteristics of mouse
motion (i.e., the distance, speed, and direction of movement) and mouse button events.
By default, mouse dragging in combination with a left button press is mapped to the
translation of an active region, while mouse dragging in combination with a right
button press is mapped to the rotation of an active region.

Figure 9(a) illustrates this functionality by means of a simple interactive sketch
of a children’s audio book. On top of a background image, several transparent active
regions are defined that capture mouse clicks, updating, in response, a variable “tts-
input” with an a priori defined text. Update of this variable causes a text-to-speech
engine to pronounce the given text. Figure 9(b) illustrates another example, where

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:18 Ž. Obrenovic and J.-B. Martens

Fig. 8. Presenting variable values within sketches through updating the textual labels of active regions
(a) or by translating an active region (b).

Fig. 9. Mapping mouse button clicks (a) and mouse movements (b) to variable updates that trigger in-
teractive events, in this case output of the text-to-speech service, and changing the volume of the MP3
player.

the orientation of an active region is mapped to the volume control of an MP3 player,
enabling a user to control the volume by rotating the active region.

6.1.4. Sketching as a Visual Coordination Language. Active regions can be connected to
more than one variable, and the update of any of the connected variables will result in
an update of all associated variables. Therefore, active regions can be used to connect
variables in a simple and intuitive way. Figure 10 shows how this type of mapping can

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:19

Fig. 10. Using graphical transformations as a visual coordination language: mapping the output of a Wii
remote accelerator to the rotation of an active region in the sketch, and subsequently mapping this rotation
to the volume control of an MP3 player.

Fig. 11. Using a gesture to define the trajectory of an active region. Sketchify records the position as well
as the velocity and acceleration of a gesture.

be used as a visual language to connect the motion detected by a Wii accelerator to the
volume of an MP3 player.

6.1.5. Defining Trajectories and Timers through Gestures. Sketchify exploits gesturing not
only as a drawing modality, but also as a way to define a range of interactive effects. As
stated before, the motion of a region can be restricted to a freehand sketched trajectory
(Figure 11). Next to using gestures to defining trajectories, they can also be used to
create timers with specific timer curves (see Appendix A for details). This means that
such a timer can repeat the timing (velocity as a function of time) in the original
gesture. In this aspect, Sketchify is inspired by the early work of Ronald Baecker and
his GENESYS system for picture-driven animation [Baecker 1969a, 1969b].

6.2. End-User Programming

In order to define rich interactions, designers also need complex ways of influencing
the behavior of sketches, for instance, by means of testing conditions, doing simple
calculations, or creating sequences of actions. In many interaction scenarios, such as
in speech applications, the sketches may not have any visible elements and the sketch
behavior becomes the only “object” actually being designed. Having in mind that most
designers are not experienced programmers and that there is a huge diversity between
designers, we decided to connect our environment to a range of end-user programming
tools which are likely to be accessible and usable for designers [Stolterman et al. 2008].

In Sketchify, spreadsheets and scripting languages can be used to quickly outline
the behavior of sketches. Spreadsheets and scripts are proven, highly productive, and

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:20 Ž. Obrenovic and J.-B. Martens

Fig. 12. Examples of spreadsheets formulas and simple scripts written in different languages. All examples
implement the same “echo” function: on update of one variable, another variable is updated with the same
value.

simple to learn and use end-user development paradigms [Obrenovic and Gasevic 2008,
2009]. We currently support OpenOffice.org CALC spreadsheets, and several higher-
level scripting languages including Javascript, Python, BeanShell, Groovy, Ruby, TCL,
Sleep, Haskell, and Prolog.

In all cases, existing end-user development solutions were extended with mecha-
nisms to update and read Sketchify variables, to receive, cause, or process interaction
events (Appendix C). Designers can use any of these individual end-user programming
tools, or can combine them, describing, for example, a part of the behavior in spread-
sheets, and another part in a script. Figure 12 illustrates how a simple “echo” behavior
(on update of one variable, another variable is updated with the same value) can be
accomplished with both spreadsheet formulas, and simple script code in six different
scripting languages.

Figure 13(a) illustrates how spreadsheets and scripts can be used in combination with
I/O services and freehand sketching in order to create a simple interactive sketch for
the scenario as described in Section 1. The motion detector service tracks the intensity
of the user’s motion in front of the camera, and updates the variable “motion-intensity.”
This variable is passed to a spreadsheet that contains additional formulas to process
this variable, more specifically, to map the motion intensity value into the range from
0.0 to 1.0. This derived value is passed into the new variable “transparency,” and the
transparency of the freehand sketch responds to this variable. As a result, if the user is
not moving, the image is invisible (completely transparent); the more she or he moves,
the less transparent and more visible the image becomes. Figure 13(b) also shows how
the same logic could be defined using a script instead of a spreadsheet.

Our support for end-user programming also allows for creating interactive sketches
without graphical elements. For example, to sketch speech interaction, we may use a

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:21

Fig. 13. Implementation of the interaction sketch described in Section 1. The logic behind the sketch can
be manipulated through spreadsheet formulas (a), or by means of a script (b).

spreadsheet containing only a speech recognizer and a text-to-speech engine. The ex-
ample presented in Section 4.2.2 (Figure 3), for instance, illustrated such an interactive
sketch.

7. CASE STUDIES

Sketchify has been employed in several educational activities at the Department of
Industrial Design of the Eindhoven University of Technology. We have collected valu-
able feedback about benefits and limitations of Sketchify during these activities, which
has helped us to obtain a more realistic impression of how Sketchify can be used most
advantageously. We present three case studies describing usage of Sketchify in a group
student project, in an individual student project, and in a course with 12 undergraduate
students of industrial design.

7.1. Case Study 1: The “Snoet” Project

The first case study describes sketching with Sketchify by a group of three first-year
students (in their second semester). We selected this case to illustrate how our plat-
form can facilitate a sketch-like exploration of ideas through the combined usage of
spreadsheets and I/O services, that is, even without involving freehand drawings.

The students were working on a product to help children in developing a healthy
sleeping rhythm. They chose to use Sketchify in the last two weeks of their project, when
they needed to come up with ideas on how to implement the imagined functionality of
their system. They were learning to use Sketchify for the first time during this period.
We observed several sessions in which they used Sketchify, we read their final project
report, visited the exhibition were they presented their results, and asked them for
additional details about their usage of Sketchify.

In the initial part of their project, following a literature review and some user studies,
the students had identified the basic functionality that their product should have: the
product should be able to detect if a child is awake, and then do some action to stimulate

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:22 Ž. Obrenovic and J.-B. Martens

Fig. 14. First "sketch" of a motion-based sleep-detector system.

Fig. 15. Slightly more advanced “sketch” of a motion-based sleep-detector system.

the child to fall asleep again, such as playing a song or playing a prerecorded message
from the parents. The students, however, did not have any previous experience in
working with sensing technologies, and they had only very basic knowledge about
scripting languages and spreadsheets.

Before they came across Sketchify, their initial ideas included usage of EEG and
biosignals, but they soon realized this to be unrealistic and too expensive. After being
introduced to Sketchify in an informal meeting, they got interested in its usage as it
could provide them with access to less expensive and more widely available camera-
based detection techniques which they thought could be useful for their purposes.

Their first usage of Sketchify was to learn how a camera-based detector works.
They used a motion-detector service available within Sketchify, and observed how
the values changed when they moved objects or their body in front of the camera.
They imported the value that represents the motion intensity into a spreadsheet,
where they defined a simple threshold-based sleep detection mechanism. Figure 14
shows their first sketch. Even though it took them only ten minutes to create this
solution, it has all the elements of their initial idea. Their design space consisted at
that moment of two parameters, a “motion-intensity” variable which they manipulated
by producing motion in front of the camera, and a threshold value which defined the
transition between the “awake” and the “sleep” state based on the intensity of the
motion.

After trying out this first sketch, they soon realized that the momentary motion
value did not constitute robust information about sleep activity. They agreed that they
needed an aggregate intensity of motion over some time period. The ability of our
platform to serialize variable updates proved very useful, as they were able to derive
several variables based on sequential updates of the motion intensity variable. As
they were not sure what kind of processing was necessary, they started by importing
serialized values of the motion detector into the spreadsheet. In the spreadsheet they
experimented with several statistical functions that processed cells, starting with a
simple averaging function. Figure 15 shows their new “sketch.” Their design space
now included additional parameters, such as a number of variables corresponding to
restricted values of the motion detector and statistical functions that derive aggregate

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:23

Fig. 16. Snoet, a toy that contains an IR-adapted Web camera and IR diodes that help the camera to “see
in the dark.” The toy is connected to the computer through a USB cable hidden in the tail of the toy.

values. Their exploration of this sketch revealed this to be a promising direction to
pursue, as high-motion intensity over longer periods is more likely to reflect the “awake”
state than a short period of intensity. They added a MIDI player service to play different
notes in response to the threshold value being exceeded.

The students subsequently focused on how their solution could be made to work
in dark conditions. They were, of course, aware that an ordinary Web camera is not
adequate in such conditions. Following instructions found on the Internet, they turned
the Web camera they had into a simple near-infrared (IR) camera. When they had the
IR-adapted camera ready, they were able to try it with the interactive sketch they had
built before, which revealed that it did not work very well.16 The values received from
the motion detector were very low and unreliable. After the initial disappointment, one
of the students had the idea to use an IR light diode to shed more light on the area that
was being monitored. They borrowed an IR diode from another group, and went into a
dark room to test it, with much more encouraging results this time.

After this they spent the last week in adding more details to their solution, doing
initial tests and preparing their final exhibition. They put the camera and IR diodes
within the mouse toy (Figure 16), and made the processing more complex. They used
a script to map motion intensity into 10 discrete values, created 160 serialized values,
and calculated their standard deviation and average within a spreadsheet.

It is important to note that the students started their exploration without a clear
understanding of the technology required, and that they did not have a clear idea about
what they wanted to build. Nevertheless they managed to produce a functional system,
and they received very positive comments during their final exhibition.

7.2. Case Study 2: The “Medical Assistant” Project

Our second case study describes usage of Sketchify by a third-year student of industrial
design for her final bachelor project. The project focused on the development of an
intelligent product to assist nurses in calculating the correct doses of medications. The
student used Sketchify at two stages in the project: to sketch several alternative ideas

16The students did not realize that the adapted Web camera is a near-IR camera, not suitable for “night
vision” as they expected.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:24 Ž. Obrenovic and J.-B. Martens

and to discuss them with potential users, and to implement a prototype based on the
selected concept. We selected this case to illustrate a joint usage of free hand sketches
and spreadsheets, a frequently used combination of elements within Sketchify.

After doing initial studies and interviews, the student was familiar with the required
medical calculations, and her task was to define an interface that would make working
with these calculations more intuitive and more error resistant. Medical calculations
were easy to implement within the spreadsheet extension of Sketchify, on top of which
various freehand sketches were built and tested. Within these sketches the student
explored various icons for the presentation of calculation parameters, as well as their
spatial arrangement and transitions between them. Figure 17 shows examples of such
interactive sketches. This example contains four freehand sketches with active regions
that update and visualize variables imported and processed within the spreadsheet.

The student made a number of these projects with sketches, in total creating 20
variations, after which she selected four projects that looked most promising to her,
and organized a small user study with six users. The study was organized as a talk
aloud session, where the users could interact with the sketches and report which
sketches they preferred and why. These outcomes informed the student about which
design was the most successful one in making the content understandable, and she
decided to further extend this selected design into a more advanced prototype.

The student also used our environment to implement her final prototype (Figure 18).
Her reasons for doing this were that building the prototype with Sketchify was much
easier and quicker for her, as she was able to implement all functionality within a
spreadsheet, which was a very important criterion as she was not an experienced
programmer.

Parallel with her work on the software, she also explored how the interaction with
the medical assistant could be made more tangible. For example, she used a prototype
consisting of a touch screen covered by a transparent plastic plate with slider buttons.
When the user presses or moves a plastic button, it is recognized as a mouse click or
mouse move, and interpreted within the visual area.

The student created most of the freehand sketches with Sketchify using a graphical
tablet, but she also imported some of the sketches that she initially had drawn on paper.
The student’s usage of a tablet input device also showed what hardware configuration
could be necessary to support sketching with our platform. For example, the student
spent most of her time in the laboratory where she was able to combine a tablet input
device with digital pen and a primary screen controlled by keyboard and mouse. She
used a tablet input device and digital pen to work with freehand sketches, but kept
open a spreadsheet in the primary screen to work with formulas, modifying them using
keyboard and mouse.

7.3. Case Study 3: Assignment “Sketching Interactive Systems”

With 12 undergraduate students (first to third year), we organized an assignment called
“Sketching Interactive Systems”.17 The assignment lasted for seven weeks, where each
week we organized meetings and discussions lasting 90 minutes, and students addi-
tionally spent one to two hours on individual work. The students were not restricted
in terms of tasks they wanted to support. Rather we wanted to stimulate their cre-
ativity in using various sketching techniques to quickly build rough illustrations of
their ideas in the area of novel interactive systems. The main objective of the course
was to let students experience the design of interactive systems that use various novel
interaction modalities, such as speech- and camera-based sensors, but also input from

17http://www.vip.id.tue.nl/teaching/dg230 2008/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:25

Fig. 17. Sketches from the “Medical Assistant” project. On a first screen (a) the user selects which elements
he or she wants to specify. On a second screen (b) values and units are specified. These values are stored
in the variables that are imported in the spreadsheet (e). The third screen (c) shows these values, as well
as values calculated within the spreadsheets in order to transform user input into alternative units. The
last screen (d) visualizes these values as a formula, and presents the amount of medication required as
determined from the calculations in the spreadsheet.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:26 Ž. Obrenovic and J.-B. Martens

Fig. 18. User interface of the “Medical Assistant” prototype (left). A transparent plastic layer was used on
top of a touch screen to add tangibility to the prototype (right).

Web services and other applications. The students did all assignments on their laptop
computers.

We asked students to keep a creative log book in which to write down what they
had learned and to reflect on the techniques they were using. These student logs pro-
vided us with in-depth feedback about how they experienced Sketchify. During weekly
meetings we also promoted sketching as a teaching method. Although we prepared lots
of material, during the meetings we were sketching “live,” taking student discussions
into account. This made our meeting more interactive, and during these meetings the
students also came up with novel ideas.

In general we received very positive feedback from students. All students, including
the first-year students, managed to incorporate novel interaction modalities in their
projects, and made working interactive sketches. Students produced more than 200
projects with interactive sketches (average 13.4 projects per student, ranging from 6 to
30 projects per student). All students said that they planned to use Sketchify in their
future projects, and some of them used it in their ongoing project, outside the class.
Figures 19 and 20 show some of the produced interactive sketches.

In several of their projects students combined I/O services, end-user programming,
and auxiliary tools, without using freehand sketches. For example, with our keyboard
and mouse simulator, one student explored how face motion and speech can be used
to control a range of applications. Moving the head left or right, for example, is an
intuitive way to control walking of a “drunk” character in and online game (Figure
21(a)). In a more extended version, the same student also tried out how vertical head
motion could be used in combination with speech to control the iTunes application
(Figure 21(b)). Head motions are used to scroll the list of songs, and speech to select a
genre or to control the playback.

7.4. Lessons Learned

We received very positive feedback from students and designers. The access to interac-
tive environments and services has been shown to provide useful support for creating
the dynamics and “feel” of interactive user interfaces. Students mostly experienced
problems when using scripting, or when several components of our system were used
simultaneously.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:27

Fig. 19. Some of the early interactive sketches created by students.

Fig. 20. Various projects using Wii devices. (a) a student exploring two-hand interaction using a Wii IR
sensor and two IR diodes; (b) a Wii remote in a wooden box which could detect six discrete states depending
on the rotation of the box; (c) a student controlling sound in space using WiiFit.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:28 Ž. Obrenovic and J.-B. Martens

Fig. 21. Using a face detector and a speech recognizer in combination with screen poking to control applica-
tions. Horizontal face coordinates control the online game (left), while vertical face movements and speech
control the iTunes software (right).

7.4.1. What Worked Well. Our support for freehand sketching, spreadsheets, I/O ser-
vices, and variables, in various combinations, proved to be easy to use and understand
for all the students.

—Freehand Sketching and State Transitions. Almost all students immediately under-
stood how to create freehand sketches, and created simple interactive sketches by using
active regions and state transitions “state transitions . . . are the most basic tools that
allow for simple interactive sketches . . . they have been useful and pretty straightfor-
ward” [S5]. Our support for sketching interaction through state transitions did not
require lots of learning and work in addition to creating the drawings “[they] can make
a sketch instantly interactive” [S11] “can help you communicate your ideas . . . without
too much side-stuff” [S1].

Students also appreciated the state transition diagram that was automatically gen-
erated by our tool “by using state transition diagrams it is possible to get an overview of
the system” [S4], and its value in understanding the logic of the interface “in a simple
diagram with boxes and arrows, like a state transition diagram, you can see in a few
seconds the logic thought behind the interaction” [S6]. An additional benefit of such
diagrams is their ability to show the complexity and to identify missing links among
states of the interface “With the state transition diagram I could clearly see which
sketch was linked to another sketch, the diagram also clearly showed where links were
missing or [which] sketches had too many links. It surprised me how fast the system
state diagram could get complicated.” [S3]

Students also pointed out the need for state diagrams at the level of a single sketch.
That is, our state transition diagram treats a sketch as a one discrete state, but when
variables and scripts are used, a sketch itself can also have quite a complex state
transition diagram, which we currently cannot visualize.

—Spreadsheets. Not surprisingly, spreadsheets worked well for most users. We think
that one of the reasons is that spreadsheets are similar to freehand sketches is two
aspects. Firstly, they allow direct viewing and manipulating of data. Changes in formu-
las and cells have an immediate and direct effect on all dependent data. Second, they
assist human spatial perception and reasoning: spreadsheets are designed to perform
general computation tasks using spatial relationships rather than time as the primary
organizing principle. Many people find it easier to perform calculations in spreadsheets
than to write the equivalent sequential program [Chang 1990; Shu 1989; Nardi 1993].
The ability to define a set of cells with a spatial relationship to one another, exploiting
users’ natural spatial perception and reasoning, is one of the key properties underlying
the success and widespread use of spreadsheets.

The ability to create more complex logic in sketches by including spreadsheets and
scripts was positively appreciated by students. Spreadsheets and scripts allow students

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:29

to express and develop their ideas more deeply and elaborately “it gives the sketch a
whole new impulse” [S7], “add[s] a level of intelligence to sketches which is impossible
to do without them . . . [such as] complex calculations, advanced comparisons, random
number generation” [S4], “sketches can be more complex and it can give users more
options and freedom” [S3], “the user will experience a smarter system that’s able to
make calculations and compare values, because of this I can communicate more complex
ideas” [S5].

Such elements can also help you to think about important elements of your idea,
“forces you to think about the logic behind your sketch. This can already give an initial
discussion point” [S10]

—I/O Services. I/O services were very well received by students. In general, students
acknowledged that I/O services have made their sketches more alive and brought
them closer to the domain they were addressing “[they] can make the interaction
with sketches richer and realistic” [S8], “make a sketch more alive” [S11], “the use of
developed or partly developed software or devices in enhancing the overall experience
of a sketch/model” [S2], “opens a world of new possibilities for more complex behavior of
my sketches and it adds an extra level of realism. I/O services provide a glimpse of how
it could be to integrate complex software input and output devices into my design and
they’re quick and easy to use” [S4] “In combination with the I/O services the possibilities
for interactive sketches are limitless” [S10].

Most of the students encountered the technology used in our I/O services for the first
time. The I/O services helped to deepen their knowledge of interaction technologies
“offers possibilities which I didn’t know they existed” [S4], “they broaden the possi-
bility of sketching interactive systems” [S5] “enables me to give another approach of
interaction with a device rather than just pressing buttons” [S8]. I/O services also help
to raise more realistic expectations about sensing and intelligent technologies “good to
practice with and to become aware that there are many possibilities . . . I [also] became
more aware of the complexity of [such] software” [S6]

Students often came with new ideas after being inspired by existing I/O services.
“I created scenarios so when I was creating them I was inspired by the different I/O
services that are currently available” [S10] “It wasn’t really that I started with an idea
and then used the I/O service. It was more creating an idea [that] could have the I/O
service in the sketch. But the I/O services were very easy to use, through the variables
which could be called and changed” [S11]

Regardless of their practical value, one of the students noted that “I/O services were
fun to use” [S6].

—Variables and the Blackboard: More abstract Approach to Sketching. One of the sur-
prising pieces of feedback of students was their positive acknowledgement of variables
and our interface to them. For us variables are background objects that allow con-
necting of components. What we did not realize is that many students never had had
the opportunity to actually perceive live data from sensors or services. With variables,
they could not only perceive them but could also play with them, for example, by sim-
ply updating a value in the spreadsheet interface, they could make the results of a
service visible. Seeing how variables changed also provided indirect cues, such as the
frequency of updates or the amount of noise in the sensor data.

The level of abstraction introduced by variables also enabled students to think in
more abstract and general terms about interaction. Variables helped students to look
at human-computer interaction in a more abstract way. As variables provide a uniform
abstraction of very diverse elements, the students could now think about significantly
different components in identical terms (variables), and consequently realized that
there are few limits to what can be connected “In a more general sense I am now

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:30 Ž. Obrenovic and J.-B. Martens

aware that almost every sensor can easily be connected with the PC and controlled, for
example, using a Phidget set or a library for the Nintendo Wii controller.” [S10] “There
are a lot of events, like clicking with mouse, rotating with mouse, or using the keyboard.
Later in the assignment I also learned about using external devices as triggers, like
the Wii controller or a face detector.” [S6].

7.4.2. What Did Not Work Well. Students did experience several problems when using
scripting, or when several components of our system were used simultaneously.

Most of the problems that students reported were related to the usage of scripting,
and almost all of them reported some problems and difficulties when working with
scripts.

We identified two main sources of such problems. The first problem was relatively
poor debugging support on our platform, as messages related to script errors were often
not very informative. This remains an open problem, as for this feature we are relying
on external libraries. The second, and possibly bigger, problem was that scripting
requires a completely different style of interaction compared to freehand drawing and
spreadsheets. In the latter activities, there is more freedom and visibility, and every
change causes immediate and visible effects, which makes identifying errors relatively
easy. While in spreadsheets you can immediately see and manipulate data, scripting
is a much more indirect way of controlling behavior. The user first creates code, saves
and reloads it, which are all processes with potential errors due to the strict syntax
that is imposed, and then tests the script code by changing variables. This caused lots
of confusions “when I changed something in the scripts, it didn’t instantly work in the
sketch. I had to refresh a lot of things, so that the scripting had effect on the sketch.
So I wasn’t sure whether the scripting was wrong, or whether the scripting hadn’t
been saved yet.” [S11]. “With the scripting I didn’t know if the script worked, because
nothing changed” [S9]. The precision required by script code is also in contrast with
the vagueness and ambiguity of freehand sketches “I found it hard to learn and very
time consuming to program. The code has to be absolutely correct, missing a single dot
can result in a program not working” [S4].

Some students found that scripting does not fit in the overall system “I think the
strength of Sketchify is that it enables us to quickly sketch interactive systems without
having to spend a lot of time on this. . . . However, scripting in Sketchify is quite difficult
. . . so you need to spend a lot of time . . . this is a bit in contradiction with Sketchify’s
strength...” [S8].

An additional source of confusion was the difference between our variables and script
variables. This caused problems for some of the students who tried to use Sketchify
variables as if they were declared within the script. We were not able to solve this
problem as we rely on third-party libraries for script support; however, we have recently
added an easy copy-and-paste mechanism to the blackboard interface for creating
expressions for accessing our variables from scripts.

Problems of Loosely Coupled Integration. Students also pointed out usability prob-
lems that they experienced when they were using the freehand sketching interface in
combination with I/O services, spreadsheets, or scripts, as each of these elements are
stand-alone applications, with their own interface. “Maybe less screens of everything.
When I worked with sound services and scripts, I had a lot of windows open. It became
difficult to find the right one.” [S11]. One approach taken by some students working in
our laboratory, such as our second case study shows, is to use two screens, one reserved
for the freehand sketching environment, another for spreadsheets and I/O services.

Another problem is that external tools, such as image editors, are optimized for other
tasks, and we can communicate parameters to them only in a limited way. For example,
when students were using Adobe Photoshop to create and process images, they created

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:31

images with print quality and a resolution that is much higher than what is required
for a presentation within a sketch. When many such regions are used, this significantly
reduces interaction performance without improving visual appearance. This problem
may be partially resolved by subsampling the images when loading them into Sketchify.

7.4.3. Other Lessons. We summarize the other lessons learned into a number of cate-
gories: need for tools such as Sketchify, the value in improving the understanding and
communication of interaction, the challenges of introducing complex ideas to users,
and the way to cope with scripting limitations.

—Need for Tools. The benefits of Sketchify pointed out most frequently were its practical
value in projects, improvement in the communication of dynamic effects and the feel
of interfaces, a more in-depth understanding of interaction, and the ability to get early
feedback from users and colleagues.

Our tool has been successfully used in several student projects, and students pointed
out a need for such tools, especially when they had to work in novel domains, and
with special user groups: “Since our users were elderly and the Web site was kind of
confusing and it was hard to play around with the code to change things. This would
have been way easier with Sketchify” [S1].

All students expressed their wish to use the tool in their future projects. “I definitely
see me using Sketchify in the future because my vision is to design products that have
an emphasis on rich playful interactions. I think that Sketchify is a good tool to make
quick sketches without having to spend a lot of time on programming” [S8].

Students also see Sketchify as a good tool for getting early feedback from users. As
Case Study 2 already illustrated, Sketchify enables designers to get early and more
concrete feedback from their users before they make a serious commitment in the
development of their idea. “The users have to use their imagination . . . which often
results in distorted outcomes of early user tests. By using a tool like Sketchify it
is really easy to make [a system] with which people can interact This way you
can test different interaction styles and possibilities early . . . get reliable feedback on
early sketches . . . ” [S4]. In that way you could also check if you understood the user
requirements correctly “you can ask for confirmation if this is the way [s]he meant it.”
[S10].

Students pointed out that this “also enables to provide others with better feedback”
[S3], that is, “instead of saying ‘I wonder what that would be like’ I can actually say ‘it
works well’ or ‘it doesn’t”’ [S4].

—Improved Understanding and Communication. Students especially appreciated the
ability of Sketchify to quickly create dynamic effects, through state transitions, ani-
mations, formulas, and I/O services, and its value in communicating their ideas about
interaction. “I’ve seen absolutely beautiful sketches from people with excellent draw-
ing skills, but as soon as complex movement or dynamics were involved, the sketches
were a bit unclear. Extra explanation was needed for me to fully understand the ideas.
When animated sketches are used, even people without excellent drawing skills could
make their ideas clear to me: I could see in real time the movement and dynamics of
the device, interface, or something else that is being sketched.” [S4]

In this way, they were able to communicate in a more convincing way “showing the
interactive sketch the product is more convincing for the people at the exhibition” [S6],
and they were able to more convincingly demonstrate the behavior and feel of their
system “by using external devices like the Wii, I am able to emulate/synthesize the feel
of my sketch/model in a more interactive and natural way” [S2].

Seeing and experiencing interaction also makes it easier to understand its logic “If
you see the system working it is easier to understand” [S3] “it is easy to understand

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:32 Ž. Obrenovic and J.-B. Martens

interactions when I can experience [them] myself . . . experiencing interaction is always
better than being told how it works” [S9] “How the idea should work/how you can inter-
act with it is often vague. By using state transitions, [for example], the viewer has to
use less imagination and the idea and interaction is more specifically visualized” [S10].

—Introducing Sketchify. Most users were able to quickly understand and adopt the idea
of interactive sketching. However, these ideas needed to be appropriately introduced.
Our platform itself does not impose serious limitations on ordering of actions, which
may cause confusion and overload, as people could hardly grasp all possibilities that
are available simply by looking at the controls, especially not when diverse elements
were combined. We explicitly addressed these issues in two ways.

First, we created a number of introductory demonstrations. An introductory demon-
stration was usually sufficient to make the purpose of our tool understood, and a short
training session enabled people to use Sketchify. A very useful way of introducing
our tool was by means of video tutorials, which all students preferred to written de-
scriptions. One negative feedback we received from students is the lack of such video
tutorials for all options within the program.

Second, we adhered to the following multilayered design principles [Shneiderman
2003] when creating our tool, implying that functionality and options are gradually in-
troduced to the users. Users typically start with the freehand sketching environment,
where they learn how to use sketches to create and organize drawings. Subsequently,
we introduced the concept of active regions and sketch transitions. After that, we in-
troduced variables, and added operations that use variables as a means to dynamically
influence freehand sketches. Once users were familiar with variables, we introduced
spreadsheets and scripts. Last but not least, we showed how functionality could be
added by means of I/O services.

—Beyond Script Limitations. Some of the students saw the strength of scripting not
primarily in the ability to quickly create a piece of code from scratch, but rather in
the ability to reuse already existing and tested code “I can use code I made earlier
. . . or give it to someone else” [S6], “possible to implement code from external sources
(made by others)” [S4]. One interesting idea for the future work is to incorporate script
templates “script templates might make the scripting more [like] sketching” [S10],
that is, creating a library of parameterized scripting functions that could be simply
imported and easily changed.

Another approach we found in several projects is the combined use of very short
scripts and spreadsheets, exploiting some complementary elements of these two
paradigms. For example, students used spreadsheets for most calculations, and scripts
for complex control structures such as nested IF statements. This is a somehow sur-
prising finding, as it suggests that students were able to combine an assortment of tools
in a way that a “real programmer” never would. While our initial idea of introducing
multiple development paradigms was to enable students to choose among tools, this
finding suggests that students also created a mental model where they where they
combine programming paradigms in a new way.

8. DISCUSSION

As a summary of previous sections, here we discuss the benefits and limitations of our
approach.

8.1. General Benefits of Our Approach

In comparison to existing solutions, our platform has several features potentially bene-
ficial for sketching of interactive systems, including support for exploration of complex

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:33

technologies in a simple way, diversity (both in terms of possible ways to interact with
our platform and in the range of components being available) and reuse of existing
environments.

8.1.1. Exploring the Possibilities and Limitations of Technologies. I/O services, although
“trimmed down” versions of real components, bring “samples” of new technologies
within the reach of the designer. By including such technologies in a sketch environ-
ment, we extended the design space, enabling designers to explore such services and
to develop more realistic expectations about the possibilities and limitations of the
technologies that these services rely on. For example, our students often came up with
innovative ideas after being inspired by the possibilities offered by I/O services, re-
porting that they were not aware that such possibilities existed. On the other hand,
designers can easily observe limitations of the technologies, such as the noise in the
sensory data, the errors in recognition, or the delays in the response of Web services.
This may stimulate them to find solutions that can help to overcome such limitations,
or to make them more acceptable, in an early phase of their design.

8.1.2. Diversity of Components. We support many input and output devices, while in
addition providing access to many external software components (see Appendix D for
details), such as Web services and semantic services, which most other sketching or
prototyping platforms currently do not support.

8.1.3. Extensibility and Domain Independence. We provide a number of extension mecha-
nisms that can assist in adding even more external applications in the future. Diversity
and extensibility make our platform less domain-dependent: any software component
or service that can be mapped to variables can in principle be integrated into our
toolset.

8.1.4. Reuse of Existing Environments. Our framework uses a range of existing environ-
ments. For example, our spreadsheet support is based on the OpenOffice.org CALC pro-
gram, our scripting support reuses already existing contributions of the Java scripting
project,18 and while our freehand sketching environment has been built from scratch,
it does allow a designer to open sketches in an alternative image editing program
such as MS Paint or Adobe Photoshop. Through our I/O services and links to external
environments, we aim to facilitate reuse of existing software and tools. This enables
designers to reuse their skills and knowledge, which in turn is expected to lead to a
faster and more efficient adoption of our toolset.

8.1.5. Diversity of Development Styles and Avoiding Proprietary Lock-In. With Sketchify, de-
signers can be creative in selecting and combining their tools and development styles.
Diversity in development styles is also an important requirement from the point of
view of creativity support tools, where the following two basic principles have been
identified as being important for their acceptance [Shneiderman 2007; Resnick et al.
2005; Myers et. al. 2000].

—Low threshold, high ceiling, and wide walls. In the words, make it easy for beginners
to start (low threshold), but also enable experts to work on more complicated projects
(high ceiling) and support a wide range of explorations (wide walls).

—Support many paths and many styles. That is, support adoption of different styles
and approaches.

Most existing platforms provide one dominant development style. For example, elec-
tronic sketching tries to enable a user to express as much as possible through freehand

18https://scripting.dev.java.net/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:34 Ž. Obrenovic and J.-B. Martens

gesturing, spreadsheets facilitate the creation of declarative relations among cells,
Max/MSP allows dataflow specification, Flash supports scripting, and processing of-
fers object-oriented programming. We instead enable a designer to choose among and
combine diverse interaction paradigms. Interaction designers can select the paradigm
closest to their skills or can combine paradigms, switching them when the limitations
of one have been reached or are no longer appreciated.

Through its ability to work with diverse interaction paradigms and tools, our platform
can help a designer to avoid the proprietary lock-in issue, that is, being too dependent
on one vendor for products and services and not being able to move to another vendor
without substantial switching cost. In our environment, the same task can often be
realized with different tools, and designers can compare and test the limits of the used
paradigms. For example, in their projects, students have often combined spreadsheets
with scripting, where they have used scripting to overcome limitations of spreadsheets,
especially when defining a control flow (for example, complex if-then-else scenarios).

An important side-effect is that our approach teaches students how to sketch in more
universal terms that go beyond tools, enabling them to think about sketching as a way
of developing ideas that can be implemented by a range of different tools, each of which,
as technology develops, may be subject to substantial changes.

8.1.6. Promoting More Efficient Collaboration between Designers and Engineers. I/O services
open a possibility for a more efficient interaction between designers and engineers.
One of the problems that we have often experienced when designers and engineers
need to work together is that the engineers perceive the ideas of designers as being
unrealistic and not precise enough to be useful. Our I/O services, although simplified,
resemble real components, and sketches expressed in terms of these services are more
likely to be close to the implementation platforms that the engineers use. Through the
exploration of services, the designer can develop more realistic expectations about the
possibilities and limitations of technologies. This interaction between designers and
engineers could work in two ways, where, in the early stages of design, engineers could
provide designers with I/O services, adapting some of the components and services that
they might use later on in the implementation stage. We provide lots of auxiliary tools
that can assist engineers in this process [Obrenovic and Gasevic 2007]. This may also
inspire a more general approach towards building software services and components,
where each service could have two sets of Application Programming Interfaces (APIs),
one engineering API with full functionality, and one sketching API representing a
simplified and limited sample of the full functionality.

8.2. General Limitations of Our Solution

The approach taken by our platform also comes with some limitations. First, it is im-
portant to keep in mind that our platform is intended for sketching, and that, although
we support a huge range of components and environments, these elements are simpler
than equivalent elements in advanced prototyping and programming environments.
We wanted to enable designers to quickly and roughly sketch interaction, rather than
to create precise and high-fidelity prototypes. To simplify integration of existing soft-
ware components, we compromised on issues such as performance or security, which
are important engineering issues that cannot be ignored in the later stages of devel-
opment. To summarize, our platform tries to improve diversity and freedom, which
comes at the price of precision. This makes our platform unsuitable for the develop-
ment of final products, and of limited use for the creation of real-time high-fidelity
prototypes.

Loosely coupled integration of various environments, as we have adopted in our tool,
can make usage of such tools tedious, especially when compared to a single integrated

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:35

environment. This can results in many windows with a nonuniform look and feel being
open at the same time. When many modules are used, the number of variables that a
designer has to manipulate can also become significant, and finding the right variable
may become difficult.

One of the benefits of our platform is extensibility, but adding elements, such as
new I/O services or environments, requires involving people with some programming
experience. We provide integration mechanisms that simplify this integration, but they,
nevertheless, require some programming skills, and most designers will probably not
be able to perform them by themselves. We partially remedy this problem by enabling
nondevelopers to integrate existing environments through auxiliary “hacking” tools,
such as a mouse and keyboard simulator or a screen scraping.

8.3. Implications for Developers of Design Tools: A Tool as a Service

We would like to encourage developers of new design tools to make their tools open
and easy to integrate and combine with other tools, as the ease with which such tools
can be integrated into existing environments can be equally (or sometimes even more)
important than the key functionality of their tool itself. Many currently available design
tools mainly support file-based interoperability, that is, the ability to import and export
data in formats that are recognized by other programs. For supporting tasks such as
sketching this is often not sufficient and a more synergetic and real-time integration
of tools is required. In our experience, a service-oriented approach is a promising
direction for more closely integrating diverse environments and components. Sketchify
provides a demonstration that such an approach allows integrating a diversity of tools
and components, irrespective of the fact that they might be written in very diverse
languages and can rely on different technologies (see Appendix D for details).

Applying a service-oriented approach also simplifies writing extensions for tools such
as Max/MSP or OpenOffice.org CALC, since many of these tools already provide mech-
anisms to extend their functionality. Rather than embedding the whole functionality
of Sketchify within such a tool or vice versa, we have chosen to use a simple commu-
nication protocol based on reading and updating variables. Such protocols are easily
supported by network connection mechanisms, one or more of which are usually avail-
able within current tools’ extension libraries. Although such networking support has
proven sufficient, it is currently mostly provided at a low level (i.e., in a form of a socket
library).19 We would like to encourage developers to also start supporting higher-level
Internet protocols, such as XML-RPC, OSC, or HTTP, since this has the potential to
make integration of tools simpler.

8.4. Future Work

In our future work, we plan to concentrate on facilitating design team work, and on
supporting the collaboration of designers with relevant stakeholders, such as engineers,
market experts, and end-users.

Our tool is currently conceived as a designer’s personal sketchbook. We also plan to
explore how it could potentially facilitate collaboration between designers, and be used
to develop and document the work of a complete design team. One possible approach is
to create a shared sketchbook, where designers (and engineers) in different roles can
view, annotate, or change the sketches.

Sketchify has the potential to improve the communication between designers and
other stakeholders in the business domain, as it enables a combination of tools that
designers use (e.g., freehand sketching) with tools that people in the business domain
use (e.g., spreadsheets). One possible approach is to create sketches and prototypes

19http://en.wikipedia.org/wiki/Internet socket/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:36 Ž. Obrenovic and J.-B. Martens

that can be adapted through spreadsheets, so that a design solution can be adapted to
new situations by nondesigners. Another potential is using already existing business
knowledge and logic, captured in spreadsheets, so that designers could build on top of
such existing, and validated, material.

9. CONCLUSIONS

In this article we have described Sketchify, a tool for sketching interactive user inter-
faces. With Sketchify, we extended the concept of paper and pencil sketching towards
the more generic concept of fluent exploration of interactive materials, enabling design-
ers to create “interactive sketches” that illustrate interaction scenarios or interaction
techniques. To stimulate further research in this direction, our software and other
materials are freely available.20

We conclude by making two points. First, we support a view that sketching should be
extended beyond the simple creation of a pencil trace on paper to deal with important
attributes of the overall user experience, especially time, phrasing, and feel [Buxton
2007]. Second, some aspects of specifying interactive system behavior are beyond free-
hand drawings and we need tools that can seamlessly integrate sketching with more
traditional (end-user) programming techniques. Sketchify demonstrates that the com-
bination of diverse environments can facilitate the development of ideas in a similar
way as more integrated domain-specific sketching tools or paper and pencil sketching
would do, at the same time offering many more possibilities.

ACKNOWLEDGMENT

We would like to thank B. Atasoy, J. Quevedo, B. Buxton, D. Frohlich, and L. Hardman for their comments.
We also thank students of Industrial Design at the Eindhoven University of Technology for their feedback.

REFERENCES

AVRAHAMI, D. AND HUDSON, S. E. 2002. Forming interactivity: A tool for rapid prototyping of physical interactive
products. In Proceedings of the 4th Conference on Designing Interactive Systems: Processes, Practices,
Methods, and Techniques (DIS’02). ACM, New York, 141–146.

BAECKER, R. M. 1969a. Picture-Driven animation. In Proceedings of the Spring Joint Computer AFIPS’69
Conference. ACM, New York, 273–288.

BAECKER, R. M. 1969b. Interactive computer-mediated animation. Ph.D. thesis, MIT, MAC-TR-61.
BAILEY, B. P., KONSTAN, J. A., AND CARLIS, J. V. 2001. DEMAIS: Designing multimedia applications with

interactive storyboards. In Proceedings of the 9th ACM International Conference on Multimedia (MUL-
TIMEDIA’01). Vol. 9, ACM, New York, 241–250.

BUXTON, B. 2007. Sketching User Experiences: Getting the Design Right and the Right Design. Morgan Kauf-
mann.

CHANG, S. K. 1990. Principles on Visual Programming Systems. Prentice Hall.
CHEN, X., KANG, S. B., XU, Y., DORSEY, J., AND SHUM, H. 2008. Sketching reality: Realistic interpretation of

architectural designs. ACM Trans. Graph. 27, 2, 1–15.
DAVIS, J., AGRAWALA, M., CHUANG, E., POPOVIC, Z., AND SALESIN, D. 2003. A sketching interface for articulated fig-

ure animation. In Proceedings of the ACM Siggraph/Eurographics Symposium on Computer Animation.
320–328.

DAVIS, R. C., COLWELL, B., AND LANDAY, J. A. 2008. K-Sketch: A ‘kinetic’ sketch pad for novice animators.
In Proceedings of the 26th Annual ACM SIGCHI Conference on Human Factors in Computing Systems
(CHI’08). ACM, New York, 413–422.

DEY, A. K., SALBER, D., ABOWD, G. D., AND FUTAKAWA, M. 1999. The conference assistant: Combining context-
awareness with wearable computing. In Proceedings of the 3rd IEEE International Symposium on
Wearable Computers (ISWC). IEEE Computer Society, 21.

EDWARDS, W. K. 2005. Putting computing in context: An infrastructure to support extensible context-enhanced
collaborative applications. ACM Trans. Comput.-Hum. Interact. 12, 4, 446–474.

20http://sketchify.sf.net/

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

Sketching Interactive Systems with Sketchify 4:37

FITZPATRICK, G., MANSFIELD, T., KAPLAN, S., ARNOLD, D., PHELPS, T., AND SEGALL, B. 1999. Augmenting the
workaday world with Elvin. In Proceedings of the 6th European Conference on Computer Supported
Cooperative Work (ECSCW). S. Bødker et al. Eds., Kluwer Academic Publishers, Norwell, MA, 431–450.

FREEMAN, E., HUPFER., S., AND ARNOLD, K. 1999. JavaSpaces Principles, Patterns, and Practice. Prentice Hall.
GELERNTER, D. 1985. Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7, 1, 80–112.
GRADY, H. M. 2000. Web site design: A case study in usability testing using paper prototypes. In Proceedings

of the IEEE Professional Communication Society International Professional Communication Confer-
ence and Proceedings of the 18th Annual ACM International Conference on Computer Documentation:
Technology and Teamwork. 39–45.

GREENBERG, S. AND BOYLE, M. 2002. Customizable physical interfaces for interacting with conventional appli-
cations. In Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology
(UIST’02). ACM, New York, 31–40.

GREENBERG, S. AND FITCHETT, C. 2001. Phidgets: Easy development of physical interfaces through physical
widgets. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology
(UIST ’01). ACM, New York, 209–218.

HARTMANN, B., DOORLEY, S., AND KLEMMER, S. R. 2008. Hacking, mashing, gluing: Understanding opportunistic
design. IEEE Pervas. Comput. 7, 3, 46–54.

HARTMANN, B., KLEMMER, S. R., BERNSTEIN, M., ABDULLA, L., BURR, B., ROBINSON-MOSHER, A., AND GEE, J. 2006.
Reflective physical prototyping through integrated design, test, and analysis. In Proceedings of the 19th
Annual ACM Symposium on User Interface Software and (UIST’06). ACM, New York, 299–308.

IGARASHI, T. AND ZELEZNIK, B. 2007, Guest Editors’ introduction: Sketch-Based interaction. IEEE Comput.
Graph. Appl. 27, 1, 26–27.

IGARASHI, T. AND HUGHES, J. F. 2003. Smooth meshes for sketch-based freeform modeling. In Proceedings of
the Symposium on Interactive 3D Graphics (I3D’03). ACM, New York, 139–142.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: A sketching interface for 3D freeform design. In Pro-
ceedings of the 26th Annual International Conference on Computer Graphics and Interactive Techniques.
ACM Press/Addison-Wesley, New York, 409–416.

JOHANSON, B., FOX, A., AND WINOGRAD, T. 2002. The interactive workspaces project: Experiences with ubiquitous
computing rooms. IEEE Pervas. Comput. 1, 2, 67–74.

KARA, L. B. AND SHIMADA, K. 2007. Sketch-Based 3D shape creation for industrial styling design. IEEE
Comput. Graph. Appl. 27, 1, 60–71.

KELLEY, J. F. 1984. An iterative design methodology for user-friendly natural language office information
applications. ACM Trans. Office Inf. Syst. 2, 1, 26–41.

KLEMMER, S. R., NEWMAN, M. W., FARRELL, R., BILEZIKJIAN, M., AND LANDAY, J. A. 2001. The designers’ outpost:
A tangible interface for collaborative Web site. In Proceedings of the 14th Annual ACM Symposium on
User Interface Software and Technology (UIST’01). ACM, New York, 1–10.

KLEMMER, S. R., SINHA, A. K., CHEN, J., LANDAY, J. A., ABOOBAKER, N., AND WANG, A. 2000. Suede: A Wizard of
Oz prototyping tool for speech user interfaces. In Proceedings of the 13th Annual ACM Symposium on
User Interface Software and Technology (UIST’00). ACM, New York, 1–10.

KRIPPENDORFF, K. 2006. The Semantic Turn: A New Foundation for Design. Taylor & Francis, Boca Raton, FL.
LANDAY, J. A. 1996. SILK: Sketching interfaces like krazy. In Conference Companion on Human Factors in

Computing Systems: Common Ground (CHI’96). M. J. Tauber Ed., ACM, New York, 398–399.
LEE, J. C., AVRAHAMI, D., HUDSON, S. E., FORLIZZI, J., DIETZ, P. H., AND LEIGH, D. 2004. The calder toolkit: Wired

and wireless components for rapidly prototyping interactive devices. In Proceedings of the 5th Conference
on Designing Interactive Systems: Processes, Practices, Methods, and Techniques (DIS’04). ACM, New
York, 167–175.

LI, Y. AND LANDAY, J. A. 2008. Activity-Based prototyping of ubicomp applications for long-lived, everyday
human activities. In Proceedings of the 26th Annual SIGCHI Conference on Human Factors in Computing
Systems (CHI’08). ACM, New York, 1303–1312.

LI, Y., HONG, J. I., AND LANDAY, J. A. 2004. Topiary: A tool for prototyping location-enhanced applications. In
Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology (UIST’04).
ACM, New York, 217–226.

LIN, J., NEWMAN, M. W., HONG, J. I., AND LANDAY, J. A. 2000. DENIM: Finding a tighter fit between tools
and practice for Web site design. In Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI’00). ACM, New York, 510–517.

MACINTYRE, B., GANDY, M., DOW, S., AND BOLTER, J. D. 2004. DART: A toolkit for rapid design exploration of
augmented reality experiences. In Proceedings of the 17th Annual ACM Symposium on User Interface
Software and Technology (UIST ’04). ACM, New York, 197–206.

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

4:38 Ž. Obrenovic and J.-B. Martens

MOGGRIDGE, B. 2007. Designing Interactions. MIT Press, Cambridge, MA.
MYERS, B., HUDSON, S. E., AND PAUSCH, R. 2000. Past, present, and future of user interface software tools. ACM

Trans. Comput.-Hum. Interact. 7, 1, 3–28.
NAM, T. AND LEE, W. 2003. Integrating hardware and software: Augmented reality based prototyping method

for digital products. In CHI’03 Extended Abstracts on Human Factors in Computing Systems. ACM, New
York, 956–957.

NARDI, B. A. 1993. A Small Matter of Programming: Perspectives on End User Computing. MIT Press,
Cambridge, MA.

OBRENOVIC, Z. AND GASEVIC, D. 2007. Open source software: All you do is put it together. IEEE Softw. 24, 5,
86–95.

OBRENOVIC, Z. AND GASEVIC, D. 2008. End-User service computing: Spreadsheets as a service composition tool.
IEEE Trans. Serv. Comput. 1, 4, 229–242.

OBRENOVIC, Z. AND GASEVIC, D. 2009. Mashing up oil and water: Combining heterogeneous services for diverse
users. IEEE Internet Comput. 13, 6, 56–64.

OLOFSSON, E. AND SJÖLÉN, K. 2005. Design Sketching. KEEOS Design Books AB, also http://www.
designsketching.com.

OWADA, S., NIELSEN, F., NAKAZAWA, K., AND IGARASHI, T. 2006. A sketching interface for modeling the internal
structures of 3D shapes. In ACM SIGGRAPH 2006 Courses. ACM, New York, 12.

PERING, C. 2002. Interaction design prototyping of communicator devices: Towards meeting the hardware-
software challenge. Interact. 9, 6, 36–46.

RESNICK, M., MYERS, B., NAKAKOJI, K., SHNEIDERMAN, B., PAUSCH, R., SELKER, T., AND EISENBERG, M. 2005. Design
principles for tools to support creative thinking. In Proceedings of the Workshop on Creativity Support
Tools. www.cs.umd.edu/hcil/CST/Papers/designprinciples.pdf.

RETTIG, M. 1994. Prototyping for tiny fingers. Comm. ACM 37, 4, 21–27.
SCHMIDT, R., WYVILL, B., SOUSA, M. C., AND JORGE, J. A. 2005. ShapeShop: Sketch-Based solid modeling with

blob trees. In Proceedings of the 2nd Eurographics Workshop on Sketch-Based Interfaces and Modeling.
53–62.

SHNEIDERMAN, B. 2003. Promoting universal usability with multi-layer interface design. In Proceedings of the
Conference on Universal Usability (CUU’03). ACM, New York, 1–8.

SHNEIDERMAN, B. 2007. Creativity support tools: Accelerating discovery and innovation. Comm. ACM 50, 12,
20–32.

SHU, N. C. 1989. Visual programming: Perspectives and approaches. IBM Syst. J. 28, 525–547.
SNYDER, C. 2003. Paper Prototyping: The Fast and Easy Way to Define and Refine User Interfaces. Morgan

Kaufmann Publishers, San Francisco, CA.
STAHOVICH, T. F. 1998. The engineering sketch. IEEE Intell. Syst. 13, 3, 17–19.
STOLTERMAN, E. 2008. The nature of design practice and implications for interaction design research. Int. J.

Des. 2, 1.
STOLTERMAN, E., MCATEE, J., ROYER, D., AND THANDAPANI, S. 2008. Designerly tools. In Proceedings of the Design

Research Society Biennial Conference. article 116.
SUTHERLAND, I. E. 1963. Sketchpad, A man-machine graphical communication system. Ph.D. thesis, Electrical

Engineering Department, Massachusetts Institute of Technology, Cambridge, MA.
THORNE, M., BURKE, D., AND VAN DE PANNE, M. 2004. Motion doodles: An interface for sketching character

motion. In ACM SIGGRAPH 2004 Papers, J. Marks, Ed. ACM, New York, 424–431.
WALDO, J. 2000. The Jini Specifications, 2nd Ed. Addison-Wesley Longman Publishing.
ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 1996. SKETCH: An interface for sketching 3D scenes. In

Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. ACM,
New York, 163–170.

Received May 2009; revised July 2010; accepted October 2010

ACM Transactions on Computer-Human Interaction, Vol. 18, No. 1, Article 4, Publication date: April 2011.

